
S-system parameter estimation for noisy metabolic
profiles using Newton-flow analysis

Z. Kutalik, W. Tucker and V. Moulton

Abstract: Biochemical systems are commonly modelled by systems of ordinary differential
equations (ODEs). A particular class of such models called S-systems have recently gained popu-
larity in biochemical system modelling. The parameters of an S-system are usually estimated from
time-course profiles. However, finding these estimates is a difficult computational problem.
Moreover, although several methods have been recently proposed to solve this problem for ideal
profiles, relatively little progress has been reported for noisy profiles. We describe a special
feature of a Newton-flow optimisation problem associated with S-system parameter estimation.
This enables us to significantly reduce the search space, and also lends itself to parameter esti-
mation for noisy data. We illustrate the applicability of our method by applying it to noisy time-
course data synthetically produced from previously published 4- and 30-dimensional S-systems.
In addition, we propose an extension of our method that allows the detection of network topologies
for small S-systems. We introduce a new method for estimating S-system parameters from time-
course profiles. We show that the performance of this method compares favorably with competing
methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.
1 Background

In order to reveal the functions of metabolites within the cell,
genomic, metabolic and proteomic data need to be integrated
with system models to allow the testing of hypotheses, and
eventually provide insights into the underlying mechanisms.
Time course profiles, that is, measurements of quantities
such as gene activity or metabolite concentration at series
of time points, are one of the most suitable data types for
such an integration effort. In particular, the post-genomic
era has granted us with various high-throughput methods,
such as microarrays and mass spectrometry, which allow
us to simultaneously measure the activities of hundreds of
genes or metabolites in biochemical systems [1].

Such systems are commonly modelled using systems of
ordinary differential equations (ODEs) [2–4]. A particular
class of such models called S-systems have recently gained
popularity in biochemical system modelling [5]. One of the
main advantages of S-systems is that model parameters are
intimately linked with the underlying structure of the bio-
chemical reactions. Even so, deriving appropriate estimates
for the values of these parameters tends to be computation-
ally expensive, which can be problematic since parameter
values can greatly influence the dynamics of the model.

S-system parameters are usually estimated from time-
course profiles [5], and various techniques have been intro-
duced for estimating S-system parameters [5–12].
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However, with the exception of [9, 12], most of the afore-
mentioned methods have only been tested on ideal data,
that is, data absent of noise. This is probably because of the
fact that noise can seriously deteriorate identification of par-
ameters [5, 13]. An extensive review paper [14] on global
optimization methods favored a stochastic algorithm, evol-
ution strategies (ES). Recent attempts have beenmade to esti-
mate S-system parameters from noisy (and real) data using
simulated annealing [15], or evolutionary optimization [16].
In this paper, we show that a certain minimisation

problem for S-systems appears to have an important struc-
tural feature that can be exploited to estimate S-system par-
ameters for noisy data. In particular, for a wide range of
examples, we demonstrate that there is an easily identifiable
one-dimensional attractor (which contains the true solution)
for the Newton flow corresponding to a standard minimiz-
ation problem for S-system parameter estimation. Thus,
we only need to search this one-dimensional attractor
(instead of the 2nþ 2 dimensional parameter space) to
find the optimal parameter vector. Consequently, this attrac-
tor allows us to considerably reduce parameter search space
and, as we shall see, lends itself to the estimation of
S-system parameters for noisy data.
The structure of the rest of this paper is as follows. First

we describe our parameter estimation algorithm for
S-systems. We then illustrate its applicability by investi-
gating its performance on previously published 4- and
30-dimensional biochemical S-systems in the presence of
noise. In addition, we indicate a method that might be
used to estimate a biochemical network structure in case
this is not known in advance. We conclude with a discussion
concerning our new method.

2 Methods

Before describing our method, we begin by reviewing some
facts concerning S-systems.
IET Syst. Biol., 2007, 1, (3), pp. 174–180



2.1 S-systems

For a biochemical system having n chemical constituents,
let xi(t), 1 � i � n, denote the concentration of the ith
chemical at time t. An S-system relating these concen-
trations is a system of ODEs with the following special form

_xi(t) ¼ ai

Yn
k¼1

xk(t)
gik � bi

Yn
k¼1

xk(t)
hik

i ¼ 1, 2, . . . , n, (1)

where ai, bi � 0 and gik, hik are all real constants (called
rate constants and kinetic orders, respectively), and _xi(t)
denotes the time derivative of concentration xi at time i
(cf. [5]). An example of such a system is presented in
Fig. 1. Note that the non-zero parameters determine the
structure of the underlying network of biochemical
reactions.
In this paper, we consider the following parameter esti-

mation problem as described, for example, by [7]: Given
measurements xij (i ¼ 1, . . . , n, j ¼ 1, . . . , N) of the concen-
tration xi(tj) of the ith chemical at time tj, and estimates dxij
of the rate of change _xi(tj) of xi at time tj, determine the
S-system parameter values ai, bi, gik, hik so that the solution
to the S-system will come as close as possible to these
values. It should be emphasized that our algorithm requires
all xij to be known. Note that we will first consider the
problem in which some of the parameters ai, bi, gik, hik
have already been set to zero, corresponding to a model con-
sisting of a fixed network of biochemical reactions. We will
discuss the more difficult problem of deciding which par-
ameters to set to zero (so as to decide which network of
reactions to choose) at the end of the results section.

2.2 Main steps in parameter estimation

Our approach for parameter estimation consists of the
following four steps:

1. As described by [7, 17], for each 1 � i � n and
1 � j � N the values dxij are used to decouple the
S-system (1) into n . N algebraic equalities.
2. For the ith set of N equations obtained in step (1) by
fixing i, 1 � i � n, a least-squared minimisation problem
is set-up. In particular, for

f (pi) ¼
XN
j¼1

dxij � ai

Yn
k¼1

x
gik
kj þ bi

Yn
k¼1

x
hik
kj

 !2
(2)

Fig. 1 Schematic representation of a 4D pathway with its
governing equations

a Branched pathway with activations and inhibitions
b Corresponding S-system. See [7] for more details
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and

pi ¼ (ai, gi,1, . . . , gi,n, bi, hi,1, . . . , hi,n)

where we aim to find a value for p i that minimizes f (p i)
subject to constraints

li � pi � ui

with li and ui constants. The values of li and ui are often
derived from specialist knowledge of the biochemical
system in question [7, 8].
3. Each constrained optimization problem from step (2) is
solved using the interior-reflective Newton method [18].
Our experimental and theoretical investigations strongly
suggest that the Newton flow [19] of the minimization
problem contains a one-dimensional attractor in parameter
space (the dimensions of which are made up by ai, gi1,
gi2, . . . , gin, bi, hi1, hi2,. . .hin), which can be written in
the form

gj(w) ¼

w j ¼ 1

aj�1=(bj�1 þ w) j ¼ 2, . . . , nþ 1

wþ a0 j ¼ nþ 2

cj�n�2=(dj�n�2 þ w) j ¼ nþ 3, . . . , 2nþ 2,

8>>><
>>>:

(3)

Fig. 2 Two types of attractor projections

Two dimensional projections of the phase plane of the Newton-flow
of the minimisation problem associated with a 4-dimensional S-system
The hypothesised attractor is marked with a dotted line, the trajectories
are shown in a solid line and the light dot on the attractor represents the
global optimum
(a) parameter a3 vs. g33; (b) parameter a3 vs. b3
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where aj, bj, cj, dj are real constants (for an example of a
typical phase plane projection see Fig. 2). Variable j loops
through the parameter indices: j ¼ 1 means ai, j ¼ 2:gi1,
j ¼ 3:gi2, . . . , j ¼ nþ 1:gin, j ¼ nþ 2:bi, j ¼ nþ 3:hi1,
j ¼ nþ 4:hi2, . . . , j ¼ 2nþ 2:hin. To rigorously prove the
existence of an attractor of this form in general appears to
be a difficult mathematical problem. However, we have
been able to show that such an attractor exists for various
S-systems, including the 4-dimensional example presented
in [7], a 30-dimensional system from [5], and a non-sparse
7-dimensional S-system (see Supplementary Material).
Since the Newton method depends on initial guesses, we
first generate 40 uniformly distributed random guesses
(i.e. the coordinates of the vectors are drawn from a
uniform distribution in the bounding box of the parameters).
After running the Newton method (for maximum 50 iter-
ations) on each of these initial guesses, we obtain several
points in the parameter space, which we assume to lie
near to the hypothesised attractor (see Fig. 2). Using the
robust bisquare regression (implemented in Matlab) in two-
dimensions, we then use these points to estimate the par-
ameters aj, bj, cj and dj in (3). If each regression produces
a goodness of fit R2 value greater than 0.9 we proceed to
step (4) (otherwise, we stop, as probably either the given
model is unable to describe the data sufficiently well, or
the available data is insufficient for reliable parameter
estimation).
4. Finally, using the attractor equations estimated in step
(3), we perform the Newton algorithm again with initial
guesses lying on the estimated attractor. In particular, we
split each bounding interval for a, [li, ui], into M equal
parts (li, ¼ w0 � w1 � � � � � wM ¼ ui) and run the
Newton algorithm again for each of the initial points
(g(w0), . . . ,g(wM)). This results in new estimates for the
S-system parameters. Our final parameter estimate is then
taken to be the one for which the cost function f takes on
its lowest value.

3 Results and discussion

To assess the applicability of our method, we tested it on
simulated data sets obtained from S-systems models of bio-
logical systems described in the literature, as in example [7].
In particular, for a given S-system, and randomly generated
initial concentrations, xi(t1), profiles were obtained by
numerical integration of (1) over the time interval [T0,
T1]. Measurement points were selected to be equidistant
on logarithmic scale since measurements during the
highly variant initial phase carry more information for the
parameter estimation [3]. Specifically, time points were
defined by the formula

tj ¼ T1
c j�1

� 1

cN�1 � 1
j ¼ 1, 2, . . . , N

where c and N are constants. We set T0 ¼ 0, T1 ¼ 20, and
N ¼ 20. We chose N ¼ 20 to remain within realistic exper-
imental limits. [7] used 6 data sets, each of N ¼ 100 time
point samples, while in [9] 20 data sets were used each con-
taining N ¼ 11–14 samples. We put c ¼ 1.2 to allow the
collection of 20 data points well before the system
approached its equilibrium state.

Subsequently Gaussian noise was added to both the true
concentration and derivative values to obtain simulated
measurements. In particular, we took

xij ¼ xi(tj)(1þ rj)

dxij ¼ _xi(tj)(1þ sj) (4)
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where rj � N (0, s2) and sj � N (0, (2s)2) (with N (a, b2)
denoting a normal distribution with mean value a and stan-
dard deviation b). The relative error among the slope esti-
mates can vary considerably, and depends on the method
by which they are derived. In our simulations–using a
spline fitting method–we obtained a median slope estimate
deviating by approximately 2s from the real slope values.
Therefore, we assumed that the slope estimates could
have twice as much relative noise as the observed measure-
ment values. Note that even though the relative error in the
slope estimation is not homogeneous, high relative noise
occurs mostly for near zero slopes. However, such terms
are almost negligible in the objective function optimization,
and so do not greatly effect our parameter estimation.
In our implementation we used the Matlab command

lsqnonlin to carry out the Newton minimisation.

3.1 4-dimensional example

We first consider the following 4-dimensional example that
was studied by [7] (see also [17]), as depicted in Fig. 1.
To investigate the performance of our method we applied

it to simulated data with various relative noise levels:
s ¼ 0, 0.02, 0.05, 0.1, 0.2. We simulated 16 noisy data
sets (4 replicates of 4 data sets each with different initial
conditions). Thus for each substrate, xi (i ¼ 1, . . . , 4) we
have 20 � 16 ¼ 320 equations. A typical collection of pro-
files is shown in Fig. 3.
As in [7], parameters ai, bi were assumed to lie in the

interval [0, 20], and gik, hik in [21, 1]. However, we
found that the results generated by our method were not
greatly affected by the choice of bounds.
The parameters of the system (1) are shown in Table 1.

To find the average performance of our algorithm, we gen-
erated eight replicates of the 16 data sets (for each noise
level) and ran our algorithm for the eight realisations of
the complete experiment. We then computed the median
of the relative errors for each of the eight runs for each par-
ameter. These median relative errors for all parameters are
summarised in Table 1. The average of all (median) relative
parameter errors were 0%, 3.9%, 10.04%, 18.53%, 37.49%
for noise levels 0%, 2%, 5%,10%, 20%, respectively. Note

Fig. 3 Reconstructed concentration profiles

Typical concentration profiles of the 4-dimensional example
Measurement data are obtained by adding 20% relative noise to the
noise-free concentration curves
IET Syst. Biol., Vol. 1, No. 3, May 2007



Table 1: Median relative error of the parameters for different noise levels

Parameters

12.00 – – 20.80 – 10.00 0.50 – – –

8.00 0.50 – – – 3.00 – 0.75 – –

3.00 – 0.75 – – 5.00 – – 0.50 0.20

2.00 0.50 – – – 6.00 – – – 0.80

Relative error of estimates for 0% noise

0 – – 0 – 0 0 – – –

0 0 – – – 0 – 0 – –

0 – 0 – – 0 – – 0 0

0 0 – – – 0 – – – 0

Relative error of estimates for 2% noise

0.0391 – – 0.032 – 0.0474 0.0419 – – 0

0.0241 0.0154 – – – 0.0606 – 0.041 – 0

0.0484 – 0.0379 – – 0.0324 – – 0.0557 0.0283

0.0588 0.0488 – – – 0.0082 – – – 0.0424

Relative error of estimates for 5% noise

0.0101 – – 0.0313 – 0.0092 0.0163 – – –

0.0657 0.0523 – – – 0.1923 – 0.1253 – –

0.2859 – 0.2023 – – 0.1734 – – 0.2883 0.0412

0.0683 0.0365 – – – 0.0162 – – – 0.0919

Relative error of estimates for 10% noise

0.1221 – – 0.1344 – 0.1544 0.1328 – – –

0.1331 0.0639 – – – 0.3344 – 0.1421 – –

0.2912 – 0.254 – – 0.1568 – – 0.4611 0.1602

0.2134 0.142 – – – 0.0567 – – – 0.197

Relative error of estimates for 20% noise

0.5261 – – 0.4849 – 0.612 0.422 – – –

0.2839 0.1694 – – – 0.6576 – 0.3333 – –

0.2691 – 0.2539 – – 0.1402 – – 0.697 0.333

0.2769 0.3305 – – – 0.2528 – – – 0.3303
that these values were obtained when the true underlying
topology was assumed to be known (i.e. when all the zero
parameters are all assumed to be equal to 0).
As expected, the error in parameter estimation increases

as the relative noise level amplifies. We also found that
the average relative parameter error is proportional to the
relative noise level of the data. This fact is supported by
theoretical findings presented in the Discussion. It can be
clearly seen in Table 1 that for all noise levels the largest
mean error occurred for the parameters in the third equation
(_x3 ¼ 3x0:752 � 5x0:53 x0:24 ), which is not surprising as it
involves the most parameters.
Using our algorithm it took 90 seconds (on a single

Pentium 4 PC: Dell Poweredge 2800 Bi-dual Xeon
2.8 Ghz with 4Gb RAM) to estimate the 17 unknown par-
ameters for the above 4-dimensional example. The run
time is almost independent of the noise level.

3.2 30-dimensional example

To investigate the performance of our method when applied
to a higher-dimensional example we applied it to the
30-dimensional S-system corresponding to a gene network
described in [9] (originally published in [20]). Note that
IET Syst. Biol., Vol. 1, No. 3, May 2007
here instead of metabolite concentration profiles we model
gene activities over time.

We employed exactly the same setup as presented by [9]
(for details see the Supplementary Material): initial concen-
trations were randomly taken from [0, 2]; 20 data sets of 11
sampling points were generated; 2%, 5%, 10%, 20% rela-
tive Gaussian noise has been added to the simulated data.

Note that since we decouple the system, the complexity
of the parameter estimation is determined by the sparsity
of the network. Thus, even though the system is
30-dimensional, due to its sparsity the parameter estimation
does not require much more computational effort than the
4-dimensional example.

As before, we repeated our test for 8 runs to measure the
mean performance of our parameter estimation. The relative
error for each type parameter is presented in Table 2. As in
the case of the 4-dimensional example, the median relative
error shows a more or less linear relationship with the relative
noise level. In [9] only the topology was estimated, therefore
no direct comparison can be drawn with our results.

The total run time of our algorithm to estimate all the 128
unknown parameters of the above 30-dimensional example
was between 10–14min on a Pentium 4 PC (Bi-dual Xeon
2.8 Ghz, 4 Gb RAM, Dell Poweredge 2800). The run time
increases somewhat with higher noise levels.
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3.3 Identifying a network topology

Up to this point we have only used our algorithm to estimate
parameters in case we have assumed a priori which terms
hik and gik to set to zero (corresponding to a fixed network
of interactions). We now propose a way to extend our
method to estimate parameters in case the underlying
network is not assumed to be known in advance, only that
hik . gik = 0 for all i, j. This latter assumption is vital, other-
wise we run into identifiability problems due to the extre-
mely high correlation between hik and gik.

Note that due to the decoupling of the ODE system, we
are in essence searching for networks all of whose edges
contain a certain vertex. Let Ni denote the collection of
networks that have at least one directed edge ending at
vertex i. For example, in Fig. 1, for i ¼ 3 we have 2
edges ending at x3.

Our algorithm can now be extended in the following way.
We run steps (i)–(iii) of our algorithm for minimal net-
works in Ni (ordered by network inclusion). We then
discard all networks that produce an R2 value lower than
0.9 in step (iii) and also contain (under inclusion) any of
the discarded networks. After this, we carry out step (iv)
for the remaining minimal networks and record the one(s)
whose f(p�) value is the lowest. Subsequently, we discard
all networks that we have tested so far, and repeat the
same steps for networks that are minimal among those
which we have not yet looked at. The pseudo code of the
search algorithm can be found in Section 4 the
Supplementary Material.

This method appears to work well in practice since redun-
dant networks (i.e. networks that contain a nested network
which fits the data equally well) can be quickly identified
from their low R2 values. Due to the fact that in the presence
of a redundant parameter the minimisation problem is
under-determined, for different values of the redundant par-
ameter we obtain different attractors. Hence, different initial
guesses converge to different attractors, causing low R2

values when trying to fit a single attractor to the set of the
points obtained by 40 Newton iterations to the randomly
scattered initial guesses. For non-redundant networks we
use our objective function ( f ) to select the ones that give
the best fit(s).

We applied our method to the 4-dimensional S-system
above, assuming that we did not know a priori which hik,
gik parameters were 0 (thus yielding 40 parameters), with
4 different initial conditions, each with 20 sampling points
with 0%, 2%, 5%, 10%, 20% relative Gaussian noise. We
replicated each data set eight times.

As an illustration of our results, we consider the third
equation (_x3(t) ¼ a3

Qn
j¼1 xj(t)

g3j � b3

Qn
j¼1 xj(t)

h3j). For

Table 2: Median relative error of the parameters of the
30-dimensional example for various relative noise level

Median relative error

Noise (%) a g b h Median error

2 0.0111 0.0115 0.0140 0.0082 0.0106

5 0.0566 0.0290 0.0689 0.0403 0.0494

10 0.1841 0.1320 0.2389 0.1361 0.1521

20 0.5231 0.3217 0.7029 0.3357 0.3754

Parameters are grouped into rate constants and kinetic orders.
Medians are computed across all equations for the respective
group (a, g, b and h) in Table 1 in the Supplementary Material.
The last column is the median of all relative errors in the full
table
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5% relative noise, 25 out of the 56 possible networks with
5 unknowns (i.e. out of the 2nþ 2 possible variables
2n2 3 are set to zero and 5 variables are non-zero)
proved to be non-redundant. However, amongst the
maximal networks only one out of the 70 possible
network structures proved to be non-redundant. Thus,
instead of the 162 possible networks only 62 remained to
be compared in step (iv). Intriguingly, out of these networks
the true network (that is, the network in Fig. 1) came only
second compared to the network corresponding to the
equation

_x3 ¼ a3x
g31
1 x

g32
2 � b3x

h34
4

in seven out of eight trials, while being the best candidate
only once. This network differs from the true network in
only one edge: metabolite x3 is governed by x1 instead of
auto-regulating itself.
In Table 3 we present a summary for each noise level and

subproblem of the rank of the true underlying model struc-
ture amongst the 162 possible networks. Although the
differences in the residuals were statistically significant
(p-value ,0.05), even for the 15th ranked network ((1),
10% noise) the residuals of the true network were less
than twice as large as the best performing model. Still, a
sudden drop can be seen in the network identification
success between 5% and 10% relative noise: the complete
4D-system topology ranked as 4th (¼1 * 2 * 2 * 1) at 5%
noise level, while 135th (¼3 * 3 * 15 * 1) at 10% noise
level. This is probably due to the high cross-correlation
between the parameters. In case of noise-free data (0%
noise) both the network and the parameter reconstruction
were perfect.
Note that the total run time for estimating the

4-dimensional example with unknown topology was 2.5 h
on the same Pentium 4 PC machine mentioned above.
This compares well with [7] where, for the same
4-dimensional example, but without noise, it took 15 min
(machine not specified), and [17] where a runtime of 2.5 h
(1200 MHz Intel Pentium M processor using 384 MB of
RAM) was reported, without noise, using interval analysis.
As pointed out above, due to decoupling we treated the n

ODEs separately. Thus the run time of our algorithm
increases only linearly as a function of reactants n. The
other source of complexity is the sparsity of the network.
Namely, the maximum number of chemicals influencing a
certain chemical in the system k, corresponding to the
number of edges entering a node. The advantage of our pro-
posed method for network searching is that we start check-
ing from the simplest topologies (those that do not contain
any other network) to the more complex ones (see also
[21] where a similar topology searching strategy is pro-
posed). Since our method spots redundant topologies we
only need to check up to the true complexity (plus one),
and not all existing topologies. The maximum number of
Newton iterations in steps (ii)–(iii) was selected to be 10
times the number of unknown parameters in the given
equation to find the dependencies between parameters. In

Table 3: Topology ranking

Equations 0% 2% 5% 10%

1 1st 1st 1st 3rd

2 1st 1st 2nd 3rd

3 1st 1st 2nd 15th

4 1st 1st 1st 1st
IET Syst. Biol., Vol. 1, No. 3, May 2007



our experience this iteration number selection was sufficient
to find good estimates for attractor curves. A similar
network construction algorithm was proposed by [22].
Based on these algorithm settings, using the Stirling

formula [23], the computational complexity of our algor-
ithm is approximately O(

Pk
j¼1 (

n
j
)j). As expected, it is

polynomial in terms of the number of reactants (n), and
exponential in the maximum degree of the network (k). In
practice, however, for biochemical systems the underlying
network structure tends to be sparse and therefore we
expect k � n.

4 Conclusions

We have presented a new method for estimating S-system
parameters, that can be applied to noisy data. In particular,
we have shown for 4- and 30-dimensional examples that we
can reliably reconstruct the parameters for an underlying
model. Moreover, for the 4-dimensional example we have
shown that for moderate noise (5%) we can more often
than not identify the underlying network associated with
the model.
The run time of our method compares favorably with other

contemporary methods in the literature. For a fixed network
the running time is directly proportional to the dimension of
the underlying system, which should prove useful compared
with other approaches. This is a direct consequence of
the fact that the attractor of the Newton flow appears to
be one-dimensional. Also, having successfully recovered
parameters for a 30-dimensional example having high
network complexity (the largest that we have found in the
literature on S-system parameter estimation), we have
demonstrated that our method can probably perform well
for higher dimensional (not too dense) problems.
The success of our method, even for relatively high-noise

levels, can be attributed to the fact that the conjectured
attractor appears to only slightly change even for high
noise levels (Fig. 4). This is supported by theoretical evi-
dence presented by [24]. Another advantage of our
method is that, in case of S-system models, the attractor
curve is straight-forward to fit. If our conjecture were true
it would guarantee that our method would always obtain
global optimum. Some of the initial (40) guesses in step
(iii) may converge to suboptimal solutions, but the rest of

Fig. 4 Effect of noise on the attractor

2D projections of the attractors obtained from the 4-dimensional
example data with various noise levels
Star marks the respective projection of the true parameter vector
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them should be enough to reconstruct the one-dimensional
attractor – which contains the true solution of the
S-system-based on its known form for S-systems.

Although we have not been able to prove the the exist-
ence of a one-dimensional attractor for the Newton flow,
in the Supplementary Material we have provided some evi-
dence that this is probably the case. This is supported by the
existence of an invariant, exponentially attracting manifold
for the Newton flow in general [25]. Moreover, if the attrac-
tor does not exhibit the assumed properties our method will
terminate without producing a (false) result due to the R2

check that we make in the algorithm.
The goodness-of-fit R2 does not depend on the level of

noise added to the perfect data. However, it deteriorates
with the increasing complexity of the S-system, although
this can be improved by increasing the number of Newton
iterations.

We illustrate through our 4-dimensional example (at 5%
noise level) how much each step of our algorithm ((ii)–(iv))
increases the accuracy of the parameter estimation: (1) In
step (ii) we ran the Newton search with random initial
guesses; (2) In step (iii) we started the search with initial
guesses lying on the attractor; and (3) In step (iv) we
picked the best limit point iterated in the previous step.
We computed the expected value of the average parameter
estimation error for the estimates produced in each step. We
ran the algorithm for 10 different data sets with varying
noise patterns. The average error in (1) was 3.21; in (2)
2.40; and in (3) 0.55. This result indicates that our method
can achieve a more accurate parameter identification than
standard Newton-methods.

When evaluating the results different sources of error need
to be considered in the estimation: (i) The inherent error in
any estimate which is caused by the noise in the data set,
which cannot be completely avoided and only depends on
the actual data set and the objective function in use; (ii)
The error introduced by the numerical method we use to
solve the optimization of the objective function. The first
source of error can be somewhat avoided by making a
better choice of objective function ( f ), changing initial con-
ditions (x(0)), or sampling time selection (ti) [3]. Note,
however that these issues are out of the scope of our paper.
Considering the noise of the optimal solution as a function of
these factors, a formula that gives a linear relationship
between the standard deviation of the theoretically best par-
ameter estimate and the relative noise in the data sets (s) can
be derived (see Supplementary Material). The parameter
estimates in our examples reflect this linear trend.

We applied this formula to compute the theoretically
expected relative error for parameter estimation. An
example of this for 5% relative noise is shown in Table 4.
The mean of the expected relative errors of the theoretically
best estimate for 2%, 5%, 10%, 20% relative noise were
3.9%, 9.76%, 19.52%, 39.03%, respectively. Note the close
agreement with the mean expected error of the estimates
obtained by our method: 3.9%, 10.04%, 18.53%, 37.49%.
In particular, (2) indicates that our algorithm will provide
an estimate whose expected error is very similar to that of
the theoretically best estimate. It follows that our method is
quite likely to find a global optimum. Note that our tests
showed that the performance of our algorithm drops if both
kinetic orders gik and hik are non-zero for fixed i and k, that
is, chemical constituent k can simultaneously inhibit and
induce chemical constituent i. This is probably due to the
fact that the attractor is much less stable in this case.

In future, it will be worth investigating how the properties
of the attractor change for other models, such as GMAs
[11]. Also, as has been mentioned above, the network
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searching method that we have described is quite slow and
therefore is not applicable to larger examples. Hence it will
be important to develop faster tools for significantly redu-
cing the class of plausible networks.

5 Supporting information

Additional information and further details of the results can
be found in the Supplementary Material available at http://
www.ietdl.org/IET-SYB.
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