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Abstract
The aim of this paper is to introduce a technique for describing trajectories of
systems of ordinary differential equations (ODEs) passing near saddle-fixed
points. In contrast to classical linearization techniques, the methods of this
paper allow for perturbations of the underlying vector fields. This robustness
is vital when modelling systems containing small uncertainties, and in the
development of numerical ODE solvers producing rigorous error bounds.
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1. Introduction

Consider a system of ordinary differential equations (ODEs) ẋ = f (x), where x ∈ R
n and

each component fi of the vector field is analytic in x1, . . . , xn. Suppose that f (0) = 0 and that
Df (0) = � is a diagonal matrix with non-vanishing, real entries λi , i = 1, . . . , n, not all of
the same sign. We then call the origin a saddle-fixed point, or simply a saddle. To emphasize
the behaviour near the saddle, the differential equations can be expressed as

ẋ = �x + F(x), (1)

where F contains only quadratic or higher-order terms. Thus, for small x, it is natural to expect
the solutions of (1) to behave roughly like those of the linear system ẏ = �y.

In the past, significant effort has been made to provide explicit interpretations of the
somewhat vague terms ‘for small x’ and ‘roughly like’ in the sentence above. Apart from
the Hartman–Grobman theorem (see [Ha60, Ha64]), which is purely topological, the most
comprehensive result is due to Siegel (see [Si52]), which essentially states that, if the
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eigenvalues λ1, . . . , λn satisfy a Diophantine condition1, then there is an analytic change
of coordinates h that takes trajectories of ẋ = �x + F(x) to those of the linearized system
ẏ = �y, whilst preserving their orientation with respect to time.

Note that, although the set of eigenvalues satisfying a Diophantine condition with τ > 1
has full Lebesgue measure in the set of eigenvalues corresponding to a saddle, the set of
resonant2 eigenvalues is everywhere dense. This means that not even the existence of a formal
linearizing change of coordinates is guaranteed if we allow for small perturbations of the
eigenvalues of �. The Cr -linearization theorem by Sternberg (see [St57, St58]), as well as
its variants (see [Ne64, Be78, Se85]), also share this sensitivity. Of course, the Diophantine
condition required by Siegel’s theorem is even more fragile.

If the differential equations (1) are obtained from experimental data, it is necessary to
allow for small uncertainties in the eigenvalues of �, as well as in the coefficients of the Taylor
series for F . From the discussion above, it is clear that we cannot hope to find a linearizing
change of coordinates valid for such an open set of differential equations. Instead, in this
situation, we must develop robust methods that allow for small perturbations of the underlying
vector field.

For numerical applications, the problem at hand is to produce a transfer map �: �i → �j ,
where �i and �j are different faces of the cube Br with radius r , centred at the saddle point.
Once r is fixed, we face the problem of describing the behaviour of the trajectories inside
the cube Br . This is not trivial for a nonlinear system such as (1), since on regions of �i

where some components of x are small (compared to r), the nonlinear part F(x) may very
well dominate the linear part �x. This problem remains even if we, by a polynomial change
of variables, remove all nonlinear terms of F up to a high (but finite) degree. The choice of
r is delicate: an upper bound is determined by the vector field itself, whereas a lower bound
is governed by the integration method as well as the precision of the underlying floating point
system. It is desirable to take r as large as possible, since any numerical solver breaks down
in the vicinity of a fixed point due to the unbounded flow-times.

We close this introductory section by remarking that, in the past few years, several
important results in dynamical systems have been proved using the so-called validated numerics
for ordinary differential equations (see, e.g. [Be01,KZ03,ZM01]). The core technique utilized
in these proofs is a means of numerically producing mathematically rigorous enclosures of
solutions to systems of differential equations. In order to extend such methods to include
the case of enclosing solutions passing near saddle points, estimates on the radius r and the
transfer map � mentioned above are essential. In [Tu02], less general versions of the main
results (see section 3) were successfully employed to prove the existence of a strange attractor
for the Lorenz equations. For a different approach (due to Sil’nikov) to finding a description
of �, see [De89] and references therein.

2. Normal forms

In what follows, we propose to locally find a close to identity change of coordinates
x = h(y) = y + φ(y) which does not bring (1) into a completely linear system, but rather into

1 We say that the eigenvalues λ = (λ1, . . . , λn) satisfy a Diophantine condition of type (κ, τ ) if there exists positive
κ and τ such that for i = 1, . . . , n we have |mλ − λi | = ∣∣∑n

k=1 mkλk − λi

∣∣ � κ|m|−τ for all natural numbers
m1, . . . , mn with |m| = ∑

mi � 2.
2 We say that the eigenvalues λ = (λ1, . . . , λn) are resonant if there exist natural numbers m1, . . . , mn with |m| � 2
such that mλ − λi = 0 for some i = 1, . . . , n. The number |m| is called the order of the resonance.
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a system that, in some sense, is close to being linear:

ẋ = �x + F(x)
x = y + φ(y)−−−−−→ ẏ = �y + G(y). (2)

We call the resulting system ẏ = �y +G(y) a normal form. There are of course many choices
regarding the structure of G, and we will make a very careful selection. The first property
we require from the particular normal form we have in mind is that its unstable and stable
manifolds of the origin coincide with the appropriate coordinate axes. We then say the normal
form is rectified.

In what follows, we will label the eigenvalues of � according to

λsq
< · · · < λs1 < 0 < λu1 < · · · < λup

.

In order for the invariant manifolds to coincide with the coordinate axes, it is necessary
that the axes are invariant under the flow. To ensure this, we need a change of variables which,
in a fixed neighbourhood of the origin, transforms the original equations ẋ = �x + F(x) into
ẏ = �y + G(y), where G satisfies the following conditions:

yu1 = · · · = yup
= 0 ⇒ Gui

(y) = 0 (i = 1, . . . , p) (3)

and

ys1 = · · · = ysq
= 0 ⇒ Gsi

(y) = 0 (i = 1, . . . , q). (4)

In these new coordinates, the unstable manifold coincides with the (yu1 · · · yup
)-plane, and

the stable manifold coincides with the (ys1 · · · ysq
)-plane, as desired. This will, however, not

linearize the flow on the invariant manifolds. As an example, at a point y on the unstable
manifold we have ys1 = · · · = ysq

= 0, which brings the normal form into

ẏui
= λui

yui
+ Gui

(y) (i = 1, . . . , p)

ẏsi
= 0 (i = 1, . . . , q)

which generally is nonlinear in the yui
-coordinates. An analogous statement can be made for

points on the stable manifold. In order to guarantee linear behaviour on the invariant manifolds,
we need to impose the additional condition that if a point y is close to the (yu1 · · · yup

)-plane
(the unstable manifold) or the (ys1 · · · ysq

)-plane (the stable manifold), then the perturbation
G(y) is linearly small, i.e.

d(y)
def= min

{
max

i
{|yui

|}, max
i

{|ysi
|}} ⇒ |Gi(y)| = O(d(y)) (i = 1, . . . , n).

Depending on the situation at hand, we may want to flatten the normal form even more. Flatness
of order � is given by requiring that |Gi(y)| = O(d(y)�), for i = 1, . . . , n.

In this case, it follows that the components of G can only contain terms of the form
ym = y

m1
1 · · · ymn

n , where the multi-exponent m ∈ N
n satisfies both

∑p

i=1 mui
� � and∑q

i=1 msi
� �. For future reference, we define the sets

V
n
� =

{
m ∈ N

n:
p∑

i=1

mui
< � ∨

q∑
i=1

msi
< �

}
,

U
n
� =

{
m ∈ N

n:
p∑

i=1

mui
� � ∧

q∑
i=1

msi
� �

}
;

or, equivalently

V
n
� =

{
m ∈ N

n: min

{
p∑

i=1

mui
,

q∑
i=1

msi

}
< �

}
,

U
n
� =

{
m ∈ N

n: min

{
p∑

i=1

mui
,

q∑
i=1

msi

}
� �

}
.
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In other words, writing G as a formal power series G(y) = ∑
gmym (using multi-notation

combined with vector notation), we require that

gm �= 0 ⇒ m ∈ U
n
� .

In what follows, we will sometimes omit the superscript n in U
n
� and V

n
� .

It is convenient to introduce the notion of filters for formal vector-valued power series:
given any f (y) = ∑

|m|�2 αmym, we define

〈f (y)〉U�
=

∑
m∈U�

αmym, 〈f (y)〉V�
=

∑
m∈V�

αmym. (5)

Note that we always have the decomposition f (y) = 〈f (y)〉U�
+ 〈f (y)〉V�

, which splits f into
its flat part and its non-flat part. It follows that the nonlinear part G of our normal form has
flatness of order � if 〈G(y)〉U�

= G(y), or equivalently, 〈G(y)〉V�
= 0.

We stress the fact that flattening a function to order � requires much more effort than
simply linearizing it to the same order, i.e. removing all terms αmym with |m| < �. As an
example, in the three-dimensional case with e.g. λ3 < λ2 < 0 < λ1, the term y3

1y
992
2 y5

3 is
linear to order 1000, but only flat to order 3. In general, flattening a function to order � requires
the removal of infinitely many terms, as compared to a finite amount when linearizing to the
same order.

3. Main results

Let Sn denote the space of all real-valued, diagonal n × n-matrices corresponding to the
linearization at a saddle (i.e. strictly indefinite matrices), and let Fn

� denote the space of all
such matrices whose diagonal elements λ1, . . . , λn have no resonances for m ∈ V

n
� :

Fn
� = {� ∈ Sn: m ∈ V

n
� ⇒ mλ − λi �= 0 (i = 1, . . . , n)}.

We will use the following max norms:

|y| = max{|yi |: i = 1, . . . , n} ‖f ‖r = max{|f (y)|: |y| � r}.
Theorem 3.1. Given an integer � � 2 and a system ẋ = �x + F(x), with � ∈ Fn

� , and where
F(x) = ∑

|m|�2 amxm is analytic, there exist positive constants r0, r1, K0, K1 and an analytic,
close to identity change of variables x = y + φ(y) with

‖φ‖r � K0r
2 (r < r0),

such that ẋ = �x + F(x) is transformed into the normal form ẏ = �y + G(y) satisfying
〈G(y)〉U�

= G(y) and

‖G‖r � K1r
2� (r < r1).

This theorem tells us that the change of coordinates and the resulting normal form exist
(as analytic functions) in a fixed neighbourhood of the origin.

Having established the change of coordinates, what can be said about the flow of the
resulting normal form? In what follows, we will let Br denote the closed ball (which in our
norm looks like a box) centred at the origin, and having radius r . We will refer to the face
{y ∈ Br : ys1 = r} as the lid of the box Br (recall that λs1 is the weakest contracting direction
of the stable manifold). Within Br , we let ψ(y, t) denote the solution to the normal form
ẏ = �y + G(y).

We begin with the special case where � has only one positive eigenvalue λu. In this case,
the saddle point has a unique unstable direction, and thus any trajectory starting from the lid
of Br (except points on the stable manifold of the origin) will exit through an unstable face
{y ∈ Br : |yu| = r}. We would like to know how long a trajectory spends inside the box, and
where it exits.
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Theorem 3.2. If � has only one positive eigenvalue λu, then under the same conditions as
in theorem 3.1, and given any κ > 0 sufficiently small, there exists r > 0 such that for any
trajectory starting from the lid of Br , we have the following enclosure of its point of exit:

ψu(y, τe(y)) = sign(yu)r;

r

( |yu|
r

)(|λs1 |+κ)/(λu−κ)

� ψs1(y, τe(y)) � r

( |yu|
r

)(|λs1 |−κ)/(λu+κ)

,

where τe(y) (the exit time) denotes the time spent inside Br :

1

λu + κ
log

r

|yu| � τe(y) � 1

λu − κ
log

r

|yu| .

If � has several negative eigenvalues λsq
< · · · < λs1 < 0, and if we take � > (|λsq

| + 1)/

(|λs1 | − κ), then we also have the following enclosures:

(ysi
− κr)

( |yu|
r

)|λsi
|/(λu−σ1κ)

� ψsi
(y, τe(y)) � (ysi

+ κr)

( |yu|
r

)|λsi
|/(λu+σ2κ)

,

where σ1 = sign(ysi
− κr) and σ2 = sign(ysi

+ κr).

Remark 1. These additional enclosures can be made somewhat sharper, see lemma 8.5.

In the most general setting of this paper, we allow for � having several positive eigenvalues
0 < λu1 < · · · < λup

. This situation adds the complication of determining through which
unstable face of Br a trajectory will exit. It is therefore more appropriate to provide enclosures
of the trajectories within the box, and an enclosure of the required exit-time τe(y).

Theorem 3.3. Under the same conditions as in theorem 3.1, and given any κ > 0 sufficiently
small, there exists r > 0 such that, for any trajectory starting from the lid of Br , we have the
following enclosures of the unstable components of its path throughout the box:

|ψui
(y, t) − yui

eλui
t | � κr

αi

(1 − e−αi t )eλui
t (i = 1, . . . , p),

for any αi satisfying 0 < λui
< αi � λui

− �(λs1 + κ).
If we take � > |λsq

|/(|λs1 | − κ), then for any αi satisfying 0 < αi � λsi
− �(λs1 + κ),

we also have similar enclosures of the stable components:

|ψsi
(y, t) − ysi

eλsi
t | � κr

αi

(1 − e−αi t )eλsi
t (i = 1, . . . , q).

As in theorem 3.2, there exist explicit bounds on the time spent inside Br :

τ−
e (y) � τe(y) � τ +

e (y),

where τ±
e (y) ↗ +∞ as maxi=1,...,p{|yui

|} ↘ 0.

Remark 2. See corollary 8.11 for the explicit flow-time bounds τ−
e (y) and τ +

e (y).

These theorems have several strengths. First, the constants r0, r1, K0, K1, α, κ can be explicitly
found, and are easy to obtain in terms of �, � and F (naturally κ also depends on r). Second,
the change of variables x = y +φ(y) is analytic for |y| < r0, which means that explicit bounds
on its inverse and derivatives can be obtained by Cauchy estimates. The same holds for G

when |y| < r1. Furthermore, theorems 3.2 and 3.3 tell us that, inside Br , solutions to the
normal form act very much like those of the completely linearized system. This is not true for
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a system linearized up a certain high, but finite, order. Finally, the set Fn
� , viewed as a subset

of Sn, is open and has full Lebesgue measure. We call such a set robust: almost all members
of Sn belong to Fn

� , and any sufficiently small perturbation of an element in Fn
� remains in Fn

� .
This allows us to perform the change of coordinates even when we only know the eigenvalues
up to some finite degree of accuracy (see e.g. [Tu02]). In contrast to this, we point out that the
theorems by Sternberg and Siegel fail on an everywhere dense subset of Sn, and thus cannot
be used in the situation at hand.

4. The change of variables

Returning to the normal form, we need to know how the vector field ẋ = �x +F(x) is affected
by the close to identity change of variables x = y + φ(y). We have the following identity:

ẋ = �(y + φ(y)) + F(y + φ(y)) = �y + �φ(y) + F(y + φ(y)). (6)

On the other hand, we also have

ẋ = d

dt
(y + φ(y)) = (I + Dφ(y))ẏ = (I + Dφ(y))(�y + G(y))

= �y + Dφ(y)�y + G(y) + Dφ(y)G(y). (7)

Comparing the two right-hand sides of (6) and (7) gives

Dφ(y)�y − �φ(y) = F(y + φ(y)) − Dφ(y)G(y) − G(y). (8)

For shorthand, we will use the following notation

L�φ(y) = Dφ(y)�y − �φ(y).

The operator L� is linear, and it acts on the space of formal vector fields. It leaves the spaces
of homogeneous vector-valued polynomials of any degree invariant. Looking at (8) on the
component level, we have

L�,iφi(y) = Fi(y + φ(y)) −
n∑

j=1

∂φi

∂yj

(y)Gj (y) − Gi(y) (i = 1, . . . , n), (9)

where

L�,iφi(y) =
n∑

j=1

∂φi

∂yj

(y)λjyj − λiφi(y) (i = 1, . . . , n).

Note that

L�,i(ai,mym) = (m1λ1 + · · · + mnλn − λi)ai,m1,...,mn
y

m1
1 · · · ymn

n = (mλ − λi)ai,mym.

The crux is now to choose φ so that we produce only flat component functions in the
normal form: 〈Gi(y)〉U�

= Gi(y). This means that Gi(y) must not contain elements on the
form ym = y

m1
1 · · · ymn

n where the exponent m belongs to V�. By (9), non-flat elements can
only come from Fi(y + φ(y)), and any such term can be absorbed by an appropriate choice
of φi provided that the corresponding divisor mλ − λi does not vanish. Thus the component
functions φi need only consist of the non-flat terms appearing in the right-hand side of (9),
which implies that we should choose φi such that 〈φi〉V�

= φi .
By filtering (9), we thus get

L�,iφi(y) = 〈Fi(y + φ(y))〉V�
(i = 1, . . . , n) (10)

and

Gi(y) = 〈Fi(y + φ(y))〉U�
−

n∑
j=1

∂φi

∂yj

(y)Gj (y) (i = 1, . . . , n). (11)
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Figure 1. The sets (a) {m ∈ N
2: |m| � 2}; (b) {m ∈ V

2
4: |m| � 2}.

We will begin by considering the existence and convergence of φ. The recursive
scheme (10) can be formally solved by a power series

φi(y) =
∞∑

|m|=2

ai,mym (i = 1, . . . , n),

where the coefficients are determined by inserting this expression into (10). The existence
of a solution φ is given by comparing both sides of (10): if ai,mym is a term of φi(y) with
|m| = m1 + · · · + mn, the comparison gives

(mλ − λi)ai,m = γ,

where γ is a polynomial in the coefficients of the terms in φi (i = 1, . . . , n) of degree less
than |m|. Thus, the existence of φ is proved if we show that the divisors mλ−λi do not vanish.
As φ does not contain constant or linear terms, and since 〈φ〉V�

= φ, the only divisors we
need to consider are of the form mλ − λi , where m ∈ V� and |m| � 2 (see figure 1(b) for a
two-dimensional example). In fact, the situation is generally more favourable than this: given
an explicit system ẋ = �x +F(x), we only have to consider elements of V� that actually occur
in the absorption process of the change of variables. These depend on the exact form of F ,
and may be very few compared to the total number of elements of V�.

5. Small divisors and existence

In what follows, we let x� denote the ceiling of a real number x, i.e. x� = min{k ∈ Z: x � k}.
We also introduce the numbers λ̌, λ̂ and λ̃ which denote the eigenvalue having the smallest
modulus, the eigenvalue having the opposite sign of λ̌ with largest modulus, and the eigenvalue
of the same sign as λ̌ with largest modulus, respectively:

λ̌ =
{
λs1 : |λs1 | < |λu1 |
λu1 : o.w.

λ̂ =
{
λup

: λ̌ < 0
λsq

: o.w.
λ̃ =

{
λsq

: λ̌ < 0
λup

: o.w.

Let us begin by stating a lemma that, together with its corollary, proves the existence of a
formal series for φ for virtually every saddle fixed point.
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Lemma 5.1. If the eigenvalues λ = (λ1, . . . , λn) are non-resonant for m ∈ V�, then the
divisors mλ − λi are bounded away from zero. Furthermore, for all orders |m| � ��,� ≡
� − 1 + (� − 1)|λ̂/λ̌| + λ̃/λ̌�, we have the following sharp lower bound:

|mλ − λi | � |(|m| − (� − 1)
)
λ̌ + (� − 1)λ̂ − λ̃| (i = 1, . . . , n).

Proof. Take |m| large. Since we are only considering m ∈ V�, this means that either
∑q

i=1 msi

or
∑p

i=1 mui
is large, but not both (since one of them must be less than �). Although the

corresponding eigenvalues have opposite signs, the modulus of the divisor |mλ−λi | must then
also be large. There are two cases to consider:

Case 1:
∑p

i=1 mui
< �. This means that

∑q

i=1 msi
is large, i.e. the divisor mλ − λi is large

and negative. We clearly minimize the modulus of the divisor when mup
= � − 1 and

ms1 = |m| − (� − 1) are the only non-zero components of m, and λi = λsq
, which gives

|mλ − λi | � |(� − 1)λup
+

(|m| − (� − 1)
)
λs1 − λsq

| (i = 1, . . . , n).

Case 2:
∑q

i=1 msi
< �. This means that

∑p

i=1 mui
is large, i.e. the divisor mλ − λi is large

and positive. We clearly minimize the modulus of the divisor when msq
= � − 1 and

mu1 = |m| − (� − 1) are the only non-zero components of m, and λi = λup
, which gives

|mλ − λi | � |(� − 1)λsq
+

(|m| − (� − 1)
)
λu1 − λup

| (i = 1, . . . , n).

Combining both cases, we see that the lowest bound is given by

|mλ − λi | � |(|m| − (� − 1)
)
λ̌ + (� − 1)λ̂ − λ̃| (i = 1, . . . , n),

which provides the sharp lower bound.
How large must |m| be for this bound to hold? Clearly, the bound is valid starting from

the last sign change of
(|m|− (�−1)

)
λ̌+ (�−1)λ̂− λ̃, which happens near the largest (in |m|)

approximate zero:(|m| − (� − 1)
)
λ̌ + (� − 1)λ̂ − λ̃ ≈ 0.

Solving for |m| gives

|m| ≈ 1

λ̌
((� − 1)λ̌ − (� − 1)λ̂ + λ̃) = � − 1 + (� − 1)

∣∣∣∣∣ λ̂λ̌
∣∣∣∣∣ +

λ̃

λ̌
.

Rounding up to the nearest integer produces the desired bound:

|m| = � − 1 +

⌈
(� − 1)

∣∣∣∣∣ λ̂λ̌
∣∣∣∣∣ +

λ̃

λ̌

⌉
.

Beyond this order, the divisors will increase in modulus with |m|, and have the same sign as
the eigenvalue of smallest modulus λ̌. �

Remark 3. In the planar case (n = 2), we always have λ̌ = λ̃, which gives the bound

|mλ − λi | � |(|m| − �)λ̌ + (� − 1)λ̂| (i = 1, 2),

which is valid for all |m| � ��,� ≡ � + (� − 1)|λ̂/λ̌|�.

Remark 4. Note that the asymptotic growth of the divisors is given by

|mλ − λi | ∼ |m||λ̌|.



Robust normal forms for saddles of vector fields 1973

Figure 2. The resonant set in the planar case (n = 2) with λ2 < 0 < λ1 for (a) � = 5; (b) � = 6.

(This figure is in colour only in the electronic version)

It might appear that requiring the eigenvalues to be non-resonant in V� is a serious
restriction. The following corollary, however, shows that this is in fact almost a completely
void demand.

Corollary 5.2. For any integer � � 2, the set of eigenvalues

(λs1 , . . . , λsq
, λu1 , . . . , λup

) ∈ R
q
− × R

p
+

that are resonant for m ∈ V
n
� form a closed set of n-dimensional Lebesgue measure zero.

The key word here is closed. This means that the non-resonant eigenvalues form an open
set. Furthermore, this set has full measure. Recalling our wish to be allowed some uncertainty
in the eigenvalues, this situation is ideal for our needs. The special ordering of the eigenvalues
in the statement can be achieved by a simple permutation of the coordinates, and thus causes
no loss of generality.

Proof. By lemma 5.1, there are only a finite number of orders |m| we need to consider. Since
each order can give rise to at most a finite number of different resonances, it clearly suffices
to show that each such resonance forms a closed set of measure zero in R

q
− × R

p
+. But this is

obvious: any resonance mλ − λi = 0 corresponds to a codimension-1 plane in R
p+q passing

through the origin (see figure 2 for the special case n = 2). A finite union of (n−1)-dimensional
planes certainly forms a closed set of n-dimensional measure zero, as claimed. �

Remark 5. As the order of flatness � increases, so does the number of resonant planes. In the
limit � → ∞, the resonant set becomes everywhere dense in R

q
− × R

p
+. This limiting case

corresponds to completely linearizing the system, i.e. choosing G ≡ 0.

6. Majorants and convergence

Assuming, in what follows, that the formal power series for φ defined by (10) exists, we want
to show that it also actually converges. To be able to talk about convergence, we need to specify
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a norm. It is convenient to work in a complex neighbourhood of the origin, and we will use
the appropriate max norms:

|y| = max{|yi |: i = 1, . . . , n} ‖f ‖r = max{|f (y)|: |y| � r}.
In order to prove convergence, we follow [SM71,Hi76], and use the methods of majorants. If

f (ζ ) =
∑
m

αm1,...,mn
ζ

m1
1 · · · ζmn

n ; g(ζ ) =
∑
m

βm1,...,mn
ζ

m1
1 · · · ζmn

n

are two formal power series, g is said to be a majorant of f , which we denote f ≺ g, if

|αm1,...,mn
| � βm1,...,mn

holds for all the coefficients. Note that the coefficients of g must be real and non-negative,
which implies that f must have at least as large a radius of convergence as g.

Suppose that we can find a function F̃ : C
n → C such that Fi ≺ F̃ (i = 1, . . . , n) and,

together with (10), consider the majorant system

L̃�φ̃i(ζ ) = 〈F̃ (ζ + φ̃(ζ ))〉V�
(i = 1, . . . , n), (12)

where L̃�(ζm) = �̃(m)ζm and �̃: N
n → R is defined by

�̃(m) = min{|mλ − λi |: i = 1, . . . , n}.
This can be solved formally by a power series

φ̃i(ζ ) =
∞∑

|m|=2

ãi,mζm (i = 1, . . . , n) (13)

and it follows that φ̃i is a majorant of φi . To see this, compare the two functional equations (10)
and (12). In the latter, the divisors appearing on the left-hand side are positive and smaller
than or equal to the modulus of those present in (10). Also, the coefficients of F̃ , appearing on
the right-hand side of (12), are positive and larger than or equal to the modulus of those of F .
This implies that the coefficients satisfy |am1,...,mn

| � ãm1,...,mn
for all m, as claimed.

Furthermore, since both L̃� and the right-hand side of (12) are independent of i, we have
φ̃1 = · · · = φ̃n. If we set ζ1 = · · · = ζn = z, and find a new function F̌ : C → C such that
F̃ (z, . . . , z) ≺ F̌ (z), we may, together with (12), consider the majorant system

Ľ�φ̌(z) = F̌ (z + φ̌(z)), (14)

where Ľ�(zk) = �̌(k)zk and �̌: N → R is defined by

�̌(k) = min
{
�̃(m): |m| = k ∧ m ∈ V�

}
.

Again, this can be solved formally by a power series

φ̌(z) =
∞∑

k=2

ǎkz
k (15)

and, from the same reasoning as above, it is clear that ϕ̃(z, . . . , z) ≺ φ̌(z). Note that this implies
that ‖φ‖r � φ̌(r) in the region of convergence. Thus it suffices to prove the convergence of φ̌.
We will now present explicit candidates for the above-mentioned majorants F̃ and F̌ .

Since we are assuming that F is analytic in a neighbourhood of the origin, we can therefore
identify it with its power series

F(ζ ) =




∑∞
|m|=2 c1,mζm

...∑∞
|m|=2 cn,mζm


 .
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Thus, if we set

F̃ (ζ ) =
∞∑

|m|=2

c̃mζm,

where c̃m = max{|ci,m|: i = 1, . . . , n}, we clearly have Fi ≺ F̃ (i = 1, . . . , n), and F̃ has
the same radius of convergence as F . Summing the coefficients of all terms having the same
degree produces čk = ∑

|m|=k c̃m, and if we define

F̌ (z) =
∞∑

k=2

čkz
k,

it follows that F̃ (z, . . . , z) ≺ F̌ (z). Once again, F̌ is analytic and has the same radius of
convergence as F . Hence, if the solution to (14) converges, then we have ‖φ‖r � φ̌(r) in the
region of convergence.

Now, by lemma 5.1, there exists a positive constant A (depending only on � and �) that
satisfies Ak � �̌(k) for all k = 2, 3, . . .. Thus, we can replace the operator Ľ�(zk) = �̌(k)zk ,
by the smaller operator L̂�(zk) = Akzk , which transforms (14) into the following functional
equation:

L̂�φ̂(z) = F̂ (z + φ̂(z)), (16)

where L̂�zk = Akzk , and F̂ = F̌ . Substituting F̂ (z) = ∑∞
k=2 ĉkz

k and φ̂(z) = ∑∞
k=2 âkz

k

gives the formal relation

∞∑
k=2

Akâkz
k =

∞∑
i=2

ĉi

(
z +

∞∑
k=2

âkz
k

)i

. (17)

Note that the left-hand side of (17) is simply Azφ̂′(z) (still only in a formal sense). Also note
that all appearing coefficients are non-negative due to the majorization process. Therefore, the
question regarding the convergence of φ̂ is reduced to that of the convergence of the solution
to the real ordinary differential equation:

φ̂′(x) = (Ax)−1F̂ (x + φ̂(x)), φ̂(0) = 0. (18)

Consider the partial sums φ̂d(x) = ∑d
k=2 âkx

k . By (18), we have

0 � φ̂′
d+1(x) � (Ax)−1F̂ (x + φ̂d(x)) (0 � x),

which yields the following estimate

0 � φ̂d+1(x) � xφ̂′
d+1(x) � A−1F̂ (x + φ̂d(x)). (19)

Since F̂ (x) = ĉ2x
2 + · · ·, there are positive constants r0 and B0 such that 0 � F̂ (x) � B0x

2

for all 0 � x � 2r0. Also, since φ̂d(x) = â2x
2 + · · · + âdx

d , we can choose r0 small enough
to ensure that 0 � φ̂d(x) � r0 for all 0 � x � r0. These estimates, combined with (19), give

0 � φ̂d+1(x) � A−1B0(r0 + r0)
2 = A−1B0(2r0)

2, (20)

for all 0 � x � r0. By selecting r0 �A/(4B0), we have shown the induction step φ̂d(x) �
r0 ⇒ φ̂d+1(x) � r0 for all 0 � x � r0. It follows that φ̂(x) � r0 for all 0 � x � r0, which
settles the question of convergence of the change of variables ζ + φ(ζ ).
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7. Convergence of the normal form

All that remains is to prove the convergence of the nonlinear component G of the normal form.
The aim of the proof is to give a lower bound of the radius of convergence r1 appearing in
theorem 3.1. Recall that G is recursively defined by

Gi(ζ ) = 〈Fi(ζ + φ(ζ ))〉U�
−

n∑
j=1

∂φi

∂ζj

(ζ )Gj (ζ ) (i = 1, . . . , n). (21)

As there are no small divisors to consider, the existence of a formal solution to (21) is immediate.
The question of convergence, however, is complicated by the fact that the recursive formula is
made up of two separate contributing terms. Following the spirit of the previous section, we
will use majorization techniques to establish the convergence of G.

We begin by reducing the dimension of the range of the problem by considering the
majorant system

G̃i(ζ ) = 〈F̃ (ζ + φ̃(ζ ))〉U�
+

n∑
j=1

∂φ̃i

∂ζj

(ζ )G̃j (ζ ) (i = 1, . . . , n), (22)

where φ̃ solves (12), and Fi ≺ F̃ . This can be solved by a formal power series

G̃i(ζ ) =
∞∑

|m|=2�

g̃i,mζm, (23)

Note that, by our construction of the normal form, we know that the leading coefficients of
G̃ with |m| < 2� are zero. Furthermore, since φ̃1 = · · · = φ̃n, the right-hand side of (22) is
independent of i, and we have G̃1 = · · · = G̃n. Reducing the dimension of the domain of the
problem is achieved by considering the one-dimensional functional equation

Ĝ(z) = F̂ (z + φ̂(z)) + nφ̂′(z)Ĝ(z), (24)

where φ̂ solves (16). Again, this can be solved by a formal power series

Ĝ(z) =
∞∑

k=2�

ĝkz
k, (25)

where the coefficients gk can be explicitly solved for by rearranging the terms of (24) into

Ĝ(z) = (1 − nφ̂′(z))−1F̂ (z + φ̂(z)). (26)

This expression is valid provided that 1 − nφ̂′(z) is invertible. But, since φ̂′(z) = 2â2z + · · ·,
we can always arrange this by restricting ourselves to sufficiently small z. In other words,
the radius of convergence of Ĝ(z) is at least as large as the smallest radius of convergence of
F̂ (z + φ̂(z)) and (1 − nφ̂′(z))−1, and is thus positive.

8. The solutions of the normal form

In this section, we will begin by proving a result on the structure of G using information
obtained in section 7. We will use this result to show that the solutions of the normal form act
very much like the solutions to the linearized system, as claimed in theorems 3.2 and 3.3.

Proposition 8.1. Under the same conditions as in theorem 3.1, and given r2 < r1, there exists
a positive K2 such that, in the open ball B(0, r2) = {y: |y| < r2}, we have

|Gi(y)| � K2 max
i=1,...,p

{|yui
|�} max

i=1,...,q
{|ysi

|�} (i = 1, . . . , n).
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Proof. Let Gi(ζ ) = ∑
m∈U�

gi,mζm, and consider the majorants

G̃(ζ ) =
∑
m∈U�

g̃mζm; g̃m = max
i=1,...,n

{|gi,m|},

Ĝ(z) =
∑
k�2�

ĝkz
k; ĝk =

∑
|m|=k

g̃m.

We clearly have Gi ≺ G̃ ≺ Ĝ. Let β(ζ ) = maxi=1,...,p{|ζui
|} maxi=1,...,q{|ζsi

|}, σu(m) =∑
i=1,...,p mui

, σs(m) = ∑
i=1,...,q msi

, and suppose that |ζ | < r2 < r1. Then we have

|Gi(ζ )| =
∣∣∣∣∣∣
∑
m∈U�

gi,mζm

∣∣∣∣∣∣ �
∑
m∈U�

|gi,m||ζ1|m1 · · · |ζn|mn �
∑
m∈U�

g̃m|ζ1|m1 · · · |ζn|mn

�
∑
m∈U�

g̃m

(
max

i=1,...,p
{|ζui

|}
)∑q

i=1 mui
(

max
i=1,...,q

{|ζsi
|}
)∑q

i=1 msi

= max
i=1,...,p

{|ζui
|�} max

i=1,...,q
{|ζsi

|�}
∑
m∈U�

g̃m max
i=1,...,p

{|ζui
|σu(m)−�} max

i=1,...,q
{|ζsi

|σs(m)−�}

� β(ζ )�
∑
m∈U�

g̃m|ζ ||m|−2� = β(ζ )�
∑
k�2�

ĝk|ζ |k−2� = β(ζ )�|ζ |−2�
∑
k�2�

ĝk|ζ |k.

Now we will use the fact that Ĝ is analytic. Thus the coefficients ĝk satisfy ĝk � DLk for some
positive constants D and L. Continuing the estimates, we have

|Gi(ζ )| � β(ζ )�|ζ |−2�
∑
k�2�

ĝk|ζ |k � β(ζ )�|ζ |−2�
∑
k�2�

DLk|ζ |k

= β(ζ )�|ζ |−2�D
∑
k�2�

(L|ζ |)k = β(ζ )�|ζ |−2�D
(L|ζ |)2�

1 − L|ζ |

� β(ζ )�
DL2�

1 − Lr2
= K2β(ζ )� = K2 max

i=1,...,p
{|ζui

|�} max
i=1,...,q

{|ζsi
|�},

which completes the proof. �

In what follows, we will let Br denote the closed n-box centred at the origin, and having
radius r . We will refer to the face {ζ ∈ Br : ζs1 = r} as the lid of the box Br . Recall that
s1 is the index of the negative eigenvalue of the smallest modulus. We will also introduce
the constant κ = K2r

2�−1, which should be thought of as being small compared to the
minimal distance between the eigenvalues: κ � min{||λi | − |λj ||: i �= j}. We also demand
that κ be small compared to the minimal distance between the eigenvalues and the origin:
κ � min{|λs1 |, |λu1 |}. This can clearly be arranged by taking r sufficiently small or, if r < 1,
by taking � large. We begin by stating a lemma which establishes an important dominance
property:

Lemma 8.2. For all trajectories ψ(ζ, t) of ẏ = �y +G(y) starting from the lid of Br , we have

ψs1(ζ, t) � |ψsi
(ζ, t)| (i = 2, . . . , q)

throughout the entire box.
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Proof. Using proposition 8.1, the differential equations for ψsi
(ζ, t) can be enclosed by the

differential inequalities

|ψ̇si
(ζ, t) − λsi

ψsi
(ζ, t)| = |Gsi

(ψ(ζ, t))|
� K2 max

i=1,...,p
{|ψui

(ζ, t)|�} max
i=1,...,q

{|ψsi
(ζ, t)|�}

� K2r
2�−1 max

i=1,...,q
{|ψsi

(ζ, t)|} = κ max
i=1,...,q

{|ψsi
(ζ, t)|}. (27)

Initially, we have r = ψs1(ζ, 0) � |ψsi
(ζ, 0)|, and by the differential inequalities (27) it follows

that, if ψs1(ζ, 0) = |ψsi
(ζ, 0)|, then |ψsi

| decreases faster than ψs1 . Now suppose that after
some positive time t�, we have the first occurrence of the situation ψs1(ζ, t�) = |ψsi

(ζ, t�)| for
some i = 2, . . . , q. Then, from (27), we have

|ψ̇s1(ζ, t�) − λs1ψs1(ζ, t�)| � κψs1(ζ, t�),

|ψ̇si
(ζ, t�) − λsi

ψsi
(ζ, t�)| � κ|ψsi

(ζ, t�)|.
By the same reasoning as above, |ψsi

| decreases faster than ψs1 . Hence ψs1(ζ, t) � |ψsi
(ζ, t)|

for all i = 2, . . . , q throughout the entire box. �
It now follows that the ζs1 -component of the flow is monotonically decreasing within Br .

Corollary 8.3. For all trajectories ψ(ζ, t) of ẏ = �y + G(y) starting from the lid of Br ,
we have

(λs1 − κ)ψs1(ζ, t) � ψ̇s1(ζ, t) � (λs1 + κ)ψs1(ζ, t)

and

re(λs1 −κ)t � ψs1(ζ, t) � re(λs1 +κ)t

throughout the entire box.

Proof. We simply note that maxi=1,...,q{|ψsi
(ζ, t)|} = ψs1(ζ, t) in (27). �

In what follows, we will repeatedly utilize the following lemma, which is easily proved
by, e.g., the method of variation of parameters.

Lemma 8.4. The linear ODE ż = λz + εeµt has the following solution:

z(t) = z(0)eλt + ε
eλt − eµt

λ − µ
.

Regarding the remaining stable components of ψ(ζ, t), we have the following lemma.

Lemma 8.5. Given � > |λsq
|/(|λs1 | − κ), there are positive αi such that, for all trajectories

ψ(ζ, t) of ẏ = �y + G(y) starting from the lid of Br , we have for all i = 2, . . . , q

|ψsi
(ζ, t) − ζsi

eλsi
t | � κr

αi

(1 − e−αi t )eλsi
t

throughout the entire box.

Proof. Using lemma 8.2 and corollary 8.3 together with (27), we can enclose the differential
equation for ψsi

by

|ψ̇si
(ζ, t) − λsi

ψsi
(ζ, t)| = |Gsi

(ψ(ζ, t))|
� K2 max

i=1,...,p
{|ψui

(ζ, t)|�} max
i=1,...,q

{|ψsi
(ζ, t)|�}

� K2r
� max

i=1,...,q
{|ψsi

(ζ, t)|�} � K2r
�|ψs1(ζ, t)|�

� K2r
�(re(λs1 +κ)t )� = κre�(λs1 +κ)t .



Robust normal forms for saddles of vector fields 1979

Using lemma 8.4, we can explicitly solve for a bound on the perturbation from the linear flow:

|ψsi
(ζ, t) − ζsi

eλsi
t | � κr

∣∣∣∣ eλsi
t − e�(λs1 +κ)t

λsi
− �(λs1 + κ)

∣∣∣∣ .
By our choice of �, it is clear that there exist positive αi satisfying 0 < αi � λsi

− �(λs1 + κ)

(i = 2, . . . , q). This implies that

|ψsi
(ζ, t) − ζsi

eλsi
t | � κr

αi

|eλsi
t − e�(λs1 +κ)t | � κr

αi

(1 − e−αi t )eλsi
t ,

which completes the proof. �

Remark 6. If we choose � > (|λsq
| + 1)/(|λs1 | − κ), then we can take αi > 1, which is used

in the estimates of theorem 3.2.

8.1. The proof of theorem 3.2

Assuming for now that�has only one positive eigenvalueλu, we bound the unstable component
ψu in the following lemma.

Lemma 8.6. For all trajectories ψ(ζ, t) of ẏ = �y +G(y) starting from the lid of Br , we have

(λu − σκ)ψu(ζ, t) � ψ̇u(ζ, t) � (λu + σκ)ψu(ζ, t)

and

ζue(λu−σκ)t � ψu(ζ, t) � ζue(λu+σκ)t .

throughout the entire box. Here σ = sign(ζu).

Proof. As before, using proposition 8.1, the differential equation for ψu(ζ, t) can be enclosed
by the differential inequality

|ψ̇u(ζ, t) − λuψu(ζ, t)| = |Gu(ψ(ζ, t))| � K2|ψu(ζ, t)|� max
i=1,...,q

{|ψsi
(ζ, t)|�}

� K2r
2�−1|ψu(ζ, t)| = κ|ψu(ζ, t)|. (28)

�

As an immediate consequence of this lemma, we can obtain bounds on the exit-time τ(ζ ),
which is the time it takes the trajectory starting at ζ to leave the box Br .

Corollary 8.7. For all trajectories ψ(ζ, t) of ẏ = �y + G(y) starting from the lid of Br , the
flow-time required to exit the box Br is enclosed by the bounds

1

λu + κ
log

r

|ζu| � τe(ζ ) � 1

λu − κ
log

r

|ζu| .

These bounds are attained by solving the equation |ψu(ζ, τe(ζ ))| = r , using lemma 8.6.
It is now a simple matter of substituting the enclosure of τe(ζ ) for t in the bounds of

corollary 8.3 and lemma 8.5 to conclude the proof of theorem 3.2.
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Figure 3. The uncertain regions of the lid of Br with 0 < λu1 < λu2 .

8.2. The proof of theorem 3.3

Turning to the case of having several unstable coordinates, the situation is slightly more
delicate. As an example, it is not true that a trajectory will always exit the box through
the face corresponding to the strongest expanding coordinate ζup

. To illustrate this fact, let
us consider the completely linear case ζ̇ = �ζ with two unstable directions, ζu1 and ζu2 , and
assume that a trajectory enters the lid of the box with

|ζu1 | > r

( |ζu2 |
r

)λu1 /λu2

. (29)

In this situation, even though λu1 < λu2 , the trajectory will exit through the face {ζ ∈
Br : |ζu1 | = r}. When both quantities of (29) are equal, the trajectory will exit through the
intersection of both faces, i.e. through an edge of the box.

Returning to the nonlinear situation at hand ζ̇ = �ζ + G(ζ), the dividing lines become
inflated as illustrated in figure 3. Trajectories starting from these uncertain regions may exit
the box through any one of several faces of Br , and with our limited knowledge of G, it is
impossible to tell which. Any trajectory starting outside these regions, however, will have a
well-defined face of exit.

Another complication is that, when |ψui
(ζ, t)| � |ψuj

(ζ, t)|, we might very well have a
situation where Gui

is completely dominated by, e.g., a term of the form aζ k
uj

, where i �= j

and k � �. This means that the following situation could arise:

ψ̇ui
(ζ, t) = λui

ψui
(ζ, t) + Gui

(ψ(ζ, t))

≈ λui
ψui

(ζ, t) + aψuj
(ζ, t)k ≈ aψuj

(ζ, t)k ≈ Gui
(ψ(ζ, t)),

which shows that the ui-coordinate of the normal form has no resemblance to its linear part.
This makes a detailed analysis of the corresponding flow somewhat subtle.

A convenient concept in the forthcoming analysis is that of the dominating unstable
component. This is simply the currently largest unstable component, which we label with the
symbol ı̂:

|ψuı̂
(ζ, t)| = max{|ψui

(ζ, t)|: i = 1, . . . , p}.
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Note that the dominating unstable component may change along an orbit flowing through the
box Br . We therefore have ı̂ = ı̂(ζ, t).

We begin our treatment of the unstable components by noting that the dominating unstable
component acts very much like its linear counterpart.

Lemma 8.8. While ψuı̂
(ζ, t) ∈ Br is the dominating unstable component of the trajectory

ψ(ζ, t) of ẏ = �y + G(y), we have

(λuı̂
− σκ)ψuı̂

(ζ, t) � ψ̇uı̂
(ζ, t) � (λuı̂

+ σκ)ψuı̂
(ζ, t)

and

ψuı̂
(ζ, t0)e

(λuı̂
−σκ)(t−t0) � ψuı̂

(ζ, t) � ψuı̂
(ζ, t0)e

(λuı̂
+σκ)(t−t0).

Here σ = sign(ψuı̂
(ζ, t)), and t0 is the first time ψuı̂

becomes dominating.

Proof. Using proposition 8.1, the differential equation for ψuı̂
(ζ, t) can be enclosed by the

differential inequality

|ψ̇uı̂
(ζ, t) − λuı̂

ψuı̂
(ζ, t)| = |Guı̂

(ψ(ζ, t))|
� K2 max

i=1,...,p
{|ψui

(ζ, t)|�} max
i=1,...,q

{|ψsi
(ζ, t)|�}

� K2r
2�−1 max

i=1,...,p
{|ψui

(ζ, t)|} = κ|ψuı̂
(ζ, t)|,

which translates into

(λuı̂
− σκ)ψuı̂

(ζ, t) � ψ̇uı̂
(ζ, t) � (λuı̂

+ σκ)ψuı̂
(ζ, t),

where σ = sign(ψuı̂
(ζ, t)). The second statement of the lemma follows by integration. �

By the same reasoning as in the proof of lemma 8.2, it follows that no weaker unstable
component can ever overtake the dominating component:

i < ı̂(ζ, t0) �⇒ |ψui
(ζ, t)| < |ψuı̂(ζ,t0)

(ζ, t)| (t0 � t).

Lemma 8.8 immediately gives a crude upper bound on the time required to exit the box Br .

Corollary 8.9. Let ı̂ be the dominating unstable component at time t0, i.e. let |ψuı̂
(ζ, t0)| =

max{|ψui
(ζ, t0)|: i = 1, . . . , p}. Then the flow-time required to exit the box Br is bounded

from above by

τe � t0 +
1

λuı̂
− κ

log
r

|ψuı̂
(ζ, t0)| .

This bound is attained exactly when the dominating component remains dominating throughout
the box.

In order to bound the unstable components of the normal form flow, we will make use of
corollary 8.3, which provided an upper bound on the dominating stable component.

Lemma 8.10. There exist positive αi such that, for all trajectories ψ(ζ, t) of ẏ = �y + G(y)

starting from the lid of Br , we have for all i = 1, . . . , p

|ψui
(ζ, t) − ζui

eλui
t | � κr

αi

(1 − e−αi t )eλui
t

throughout the entire box.
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Proof. Using proposition 8.1 and corollary 8.3, we can enclose the differential equation for
ψui

by

|ψ̇ui
(ζ, t) − λui

ψui
(ζ, t)| = |Gui

(ψ(ζ, t))|
� K2 max

i=1,...,p
{|ψui

(ζ, t)|�} max
i=1,...,q

{|ψsi
(ζ, t)|�}

� K2r
� max

i=1,...,q
{|ψsi

(ζ, t)|�} � K2r
�|ψs1(ζ, t)|�

� K2r
2� e�(λs1 +κ)t � κr e�(λs1 +κ)t .

Using lemma 8.4, we can explicitly solve for a bound on the perturbation from the linear flow:

|ψui
(ζ, t) − ζui

eλui
t | � κr

∣∣∣∣ eλui
t − e�(λs1 +κ)t

λui
− �(λs1 + κ)

∣∣∣∣ .
We have already chosen κ small enough to guarantee that λs1 + κ < 0. Therefore, we can find
positive αi such that 0 < λui

< αi � λui
− �(λs1 + κ) (i = 1, . . . , p). This implies that

|ψui
(ζ, t) − ζui

eλui
t | � κr

αi

|eλui
t − e�(λs1 +κ)t | � κr

αi

(1 − e−αi t )eλui
t ,

which completes the proof. �
Using these results, we can enclose the time a trajectory starting from the lid of Br spends

inside the box.

Corollary 8.11. For all trajectories ψ(ζ, t) of ẏ = �y + G(y) starting from the lid of Br , the
flow-time required to exit the box Br is enclosed by the following inequalities:

τ−
e (ζ ) � τe(ζ ) � τ +

e (ζ ),

where τ−
e (ζ ) and τ +

e (ζ ) are defined as follows:

1. Let ı̂ = ı̂(ζ, 0) (in a tie, take the largest index), and define

τ±
ı̂

(ζ ) = 1

λuı̂
∓ κ

log
r

|ζuı̂
| ;

2. For all i > ı̂ compute

τ−
i (ζ ) = 1

λui

log
r

|ζui
| + (κr/αui

)
and τ +

i (ζ ) = 1

λui

log
r

max{0, |ζui
| − (κr/αui

)} .

Here the constants αui
are defined by αui

= λui
− �(λs1 + κ);

3. Now define τ−
e (ζ ) = max{τ−

j (ζ ): j � ı̂} and τ +
e (ζ ) = min{τ +

j (ζ ): j � ı̂}.
Note that the exit-time τe(ζ ) is infinite exactly when ζu1 = · · · = ζup

= 0, i.e. when we
enter the box along the stable manifold.

It is now straightforward to obtain bounds on the trajectory when leaving the box Br .
Using corollary 8.11, we simply substitute the bounds on the exit-time τe(ζ ) into the enclosure
bounds on the components of the flow. For the stable components, we use corollary 8.3
and lemma 8.5. For the unstable components, we use lemmas 8.8 and 8.10. This results in
an interval enclosure Ii for each component, which we can possibly tighten by forming the
intersection with the interval [−r, r], i.e. ψi(ζ, τe(ζ )) ∈ Ii ∩ [−r, r]. This concludes the proof
of theorem 3.3.
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[St58] Sternberg S 1958 On the structure of local homeomorphisms of Euclidian n-space – II Am. J. Math. 80

623–31
[Tu02] Tucker W 2002 A rigorous ODE solver and Smale’s 14th problem Found. Comput. Math. 2 53–117
[ZM01] Zgliczynski P and Mischaikow K 2001 Rigorous numerics for partial differential equations: the Kuramoto–

Sivashinsky equation Found. Comput. Math. 1 255–88


