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Abstract. Truncated Taylor series representations of invariant manifolds are abundant in numerical com-
putations. We present an aposteriori method to compute the convergence radii and error estimates of
analytic parametrisations of non-resonant local invariant manifolds of a saddle of an analytic vector field,
from such a truncated series. This enables us to obtain local enclosures, as well as existence results, for the
invariant manifolds.

1. Introduction

The invariant manifolds of a saddle of a vector field are very important objects for the understanding of
the global dynamics of the flow generated by the vector field. The invariant manifolds divide the phase space
into regions with different behaviour. The simplest picture is in the plane, where the invariant manifolds,
the separatrices, of the saddles of the system, together with the limit cycles, decompose the phase plane
into connected components where the trajectories have similar α and ω limit sets. A standard reference on
invariant manifold theory is [11]. In higher dimensions the structure of the invariant manifolds is, typically,
much more complicated. The fundamental theorem about hyperbolic saddles is the stable (unstable) manifold
theorem, see e.g. [11, 20], which states that locally at a hyperbolic fixed point there exist manifolds of
dimensions ds and du, denoting the number of negative and positive eigenvalues of the linearisation of the
vector field at the fixed point, such that the tangent spaces of the stable and unstable manifolds at the fixed
point are the negative and positive eigenspaces, respectively, of the linearisation. In addition, these manifolds
can locally be described as graphs of functions from the negative eigenspace to the positive eigenspace, and
vice versa.

To compute global invariant manifolds, one typically starts with an approximation of the local invariant
manifolds lying in the corresponding eigenspace of the linearisation, and expand the global invariant manifolds
step by step from the local one. For a review of a plethora of such methods see [13].

For obtaining approximations of (local) invariant manifolds there exists many references, e.g. [2, 4, 5, 14,
23]. Few methods exist, however, that can rigorously compute enclosures of the local invariant manifolds,
which is our current objective. Some such methods are [7, 18, 19, 26].

We present a method to compute the convergence radii together with explicit error estimates of the
parametrisations of the invariant manifolds; for some methods to compute such parametrisations see e.g.
[4, 5, 23]. The parametrisations that we study are constructed such that the negative and positive eigenspaces
of the linearisation at the fixed point are invariants of the flow of the vector field. This is a much weaker
requirement than to completely linearise the vector field, as can be done, according to Siegel’s theorem
[21], under certain Diophantine conditions on the eigenvalues. The idea to compute a close to identity
transformation that removes all terms necessary for the transformed equation to have this property has
appeared in [24]; in [25] the resulting vector field, after this close to identity transformation, was named a
robust normal form. These linearisations can be seen as a special case of the parametrisations of invariant
manifolds in [4, 5], where higher order conjugacies are also considered. The constructive method to compute
convergence radii and error estimates presented in this paper, however, are much easier to implement and
compute than the aposteriori convergence operator from [4, 5]. Since the case of conjugacy with a linear flow
on the invariant manifolds is probably the most common, the fast and simple results from this paper, that
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directly translate into an algorithm to compute convergence radii and error estimates, should potentially be
very useful.

This paper is organised as follows: in Section 2 we introduce the necessary notation, recall the necessary
concepts about robust normal forms from [12, 25], and state our main result on the existence of analytic
parametrisations. In Section 3 we prove the main theorem, and in Section 4 we calculate the local invariant
manifolds in a simple planar system, similar to the discrete system studied in [18, 19, 26].

2. Statement of the results

Consider a vector field in Rd of the following form:

(1) ż = Λz + F (z),

with Λ ∈ S, where S := {diag(λds
, . . . , λ1, µ1, . . . , µdu

) : λds
≤ · · · ≤ λ1 < 0 < µ1 ≤ · · · ≤ µdu

}, and where
F is an analytic function, with F (z) = O(z2). We decompose z in the stable and unstable coordinates,
z = (x, y) ∈ Rds × Rdu. Note that any vector field with a saddle fixed point, with distinct real eigenvalues,
can (locally) be brought into this form by an affine change of variables.

The structure of the parametrisation of the invariant manifolds that we are computing is based on the
close to identity change of parameters associated with the robust normal forms studied in [12, 24, 25]. In
order to simplify the formulae, we use vector and multi-index notation. In this section we revise and adapt
the necessary notation and results from [12, 24], and state our main result.

The structure of (1) implies that the stable and unstable manifolds at the origin are tangent to the
coordinate axes. As discussed in the introduction, we seek a parametrisation of the stable and unstable
manifolds, i.e., we want to compute maps φ and ψ such that:

(2) W s
loc = {(ξ, 0) + φ(ξ) : ξ ∈ U ⊂ Es},

(3) Wu
loc = {(0, η) + ψ(η) : η ∈ V ⊂ Eu}.

We require that φ = O(ξ2) and ψ = O(η2). The maps φ and ψ determine a close to identity change of
coordinates in Rd:

(4) Θ(ξ, η) = (ξ, η) + φ(ξ) + ψ(η).

The idea of the parametrisation is that in (ξ, η)-coordinates the local stable and unstable manifolds should
be given by Es and Eu, the stable and unstable tangent spaces at the fixed point. ξ should be interpreted as
the nominally stable, and η as the nominally unstable coordinates. Since φ and ψ do not have any constant
or linear parts, the pullback of the original vector field using Θ has the following form:

(5) Θ∗(Λ + F ) = Λ +G.

In order for the local invariant manifolds to be of the forms (2) and (3) G must be of order O(min(|ξ|, |η|)).
This means that if gm is a non-zero coefficient in the formal power series ofG, then |ms| ≥ 1 and |mu| ≥ 1. We

call the non-negative number |m| = |mu|+ |ms| the order of m, and define the set Ñ2 = {m ∈ N2 : |m| ≥ 2}.
We split the space of multi-indices into the sets

V := {m ∈ Ñ
2 : |ms| = 0 or |mu| = 0},

U := {m ∈ Ñ
2 : |ms| ≥ 1 and |mu| ≥ 1},

where V is decomposed as Vs = {m ∈ V : |mu| = 0}∪Vu = {m ∈ V : |ms| = 0}. We can now define the set
of admissible linear parts of (1) that we consider:

Fs := {Λ ∈ S : m ∈ V ⇒ msλ− λi 6= 0, 1 ≤ i ≤ ds},

Fu := {Λ ∈ S : m ∈ V ⇒ muµ− µi 6= 0, 1 ≤ i ≤ du},

F = Fs ∩ Fu.

We will often use the notion of filters of a (formal) power-series: if f(z) =
∑

|m|≥2 αmz
m, we define

[f ]U =
∑

m∈U

αmz
m, [f ]V =

∑

m∈V

αmz
m, and [f ]m = αm.
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Also, we let f [d] denote the partial sum of the first d terms of f . We use the norms |z| = max1≤i≤d {|zi|}
and ||f ||r = max{|f(z)| : |z| < r}. The r-disc is denoted by Br. If X is a set and r ∈ R, we denote by rX
the set {rx : x ∈ X}.

Let α = (α1, . . . , αk) ∈ R
k, we say that α is A-finitely rationally independent if αi 6= mα, for all multi-

indices m such that 2 ≤ |m| ≤ A. Finally, let Ω : Z+ → R≥0 be defined as

Ω(k) := min (|kλ1 − λds
| , |kµ1 − µdu

|) .

We will use the following lemma, which essentially is a reformulation of [24, Lemma 5.1].

Lemma 2.1. Assume that λ is
⌈

λds

λ1

⌉

-finitely rationally independent and µ is
⌈

µdu

µ1

⌉

-finitely rationally in-

dependent. Then, Λ ∈ F . Furthermore, for all multi-indices m ∈ V with orders |m| ≥ max
(⌈

λds

λ1

⌉

,
⌈

µdu

µ1

⌉)

we have the following sharp lower bound:

(6) |m · (λ, µ) − ν| ≥ Ω(|m|), for all ν ∈ {λi} ∪ {µi}.

From this lemma it clearly follows that F is open. In addition F has full Lebesgue measure in S, since it
is constructed by removing countably many lines from S.

We are now ready to state our main theorem :

Theorem 2.2. Given a system ż = Λ(z) + F (z), where F (z) =
∑

|m|≥2 amz
m is an analytic function,

Λ ∈ F , and a natural number n1 ≥ max
(⌈

λds

λ1

⌉

,
⌈

µdu

µ1

⌉)

, there exists analytic parametrisations of the stable

and unstable manifolds of the forms (2) and (3), converging on the disk BrΘ
, with

(7) φ(ξ) ∈
∑

2≤|ms|≤n1

αms
ξms + C

(

|ξ|

rΘ

)n1+1(

1 −
|ξ|

rΘ

)−1

× B1

(8) ψ(η) ∈
∑

2≤|mu|≤n1

βmu
ηmu + C

(

|η|

rΘ

)n1+1(

1 −
|η|

rΘ

)−1

× B1

for some computable positive real numbers C and rΘ.

To prove the convergence of the change of variables Θ we proceed as in e.g. [10, 22], and use the method of
majorants. If f, g : Cd → Cd are two formal power series, and |fm| < gm for all multi-indices m, and all the
coefficients of g are real and positive, we say that g majorises f , denoted by f ≺ g. Thus, the convergence
radius of f is at least as large as that of g. We will majorise in two steps; given some f : C

d → C
d, we

construct g : Cd → C such that fi ≺ g, for all i, and then construct h : C → C such that g(z, z) ≺ h(z).

3. Proof of the main theorem

Let z = (x, y) be the original coordinates, and ζ = (ξ, η) the coordinates in the domain of Θ. By inserting
z = Θ(ζ) into (1), differentiating, and comparing the sides, we get:

DΘζ̇ = ż = Λ(Θ(ζ)) + F (Θ(ζ)).

Inserting this expression into (5) yields:

DΘ(ζ)Λζ +DΘ(ζ)G(ζ) = ΛΘ(ζ) + F (Θ(ζ)),

we reorder the terms and get:

(9) D(φ(ξ) + φ(η))Λζ − Λ(φ(ξ) + ψ(η)) = F (Θ(ζ)) −DΘ(ζ)G(ζ).

Let LΛ and KΛ be the operators

(10) LΛφ = [Dφ(ξ)Λζ − Λφ(ξ)]Vs
,

(11) KΛψ = [Dψ(η)Λζ − Λψ(η)]Vu
,

where we note that

(12) (LΛ(ξm
i ))i = (msλ− (λ, µ)i)ξ

m
i

(13) (KΛ(ηm
i ))i = (muµ− (λ, µ)i)η

m
i .
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Recall, we want to compute a normal form (5) such that G = O(min(|ξ|, |η|)). The terms in (1), which
we want to cancel with Θ, come from F . To be able to simplify (9) by decoupling the various terms into
groups, we note that Vs and Vu are invariant under F . Therefore, by filtering on the component level, we
get the following two functional equations for φi and ψi:

(14) (LΛφ)i = [Fi((ξ, 0) + φ(ξ))]Vs

(15) (KΛψ)i = [Fi((0, η) + ψ(η))]Vu

Note that (14) and (15) are the same formulae as the linear case of formulae [4, Equations (3.5)–(3.8)],
but we have included their derivation for completeness, and to set the notation.

Since Λ ∈ F , and [φ]V = φ and [ψ]V = ψ by construction, we can solve (14) and (15) recursively.
To bound the solutions of (14) and (15) we proceed as in [12, 24], and prove the convergence of the change

of variables using majorants and induction. A heuristic constant n0, such that n1 > 2n0, is needed. The
two constants n0 and n1 determine the range of coefficients of the formal power series of Θ that should be
used in the induction proof. Let

N = max

(⌈

λds

λ1

⌉

,

⌈

µdu

µ1

⌉)

,

be the constant from Lemma 2.1 from which the explicit lower bound holds. Recall that we have assumed
that n1 ≥ N .

Let φi(ξ) =
∑∞

|ms|=2 αi,ms
ξms and ψi(η) =

∑∞
|mu|=2 βi,mu

ηmu be the sought change of variables, where

the αi,ms
and βi,mu

with |ms|, |mu| ≤ n1 can be computed with any method that solves (14) and (15). To

majorise the functions φ and ψ we construct two one-dimensional functions φ̂ and ψ̂. Put

α̂k =
∑

|m|=k

max
1≤i≤d

{|αi,m|} and β̂k =
∑

|m|=k

max
1≤i≤d

{|βi,m|}.

The α̂k’s and β̂k’s will be used as the first terms in the majorants of φ and ψ, respectively. Although the
convergence of the parametrisations of the local stable and unstable manifolds can be proved separately, for
simplicity of the exposition, we henceforth study their convergence simultaneously. Therefore, let

γk = α̂k + β̂k,

and define the joint majorant

χ =

∞
∑

k=2

γkω
k = φ̂(ω) + ψ̂(ω).

To calculate αi,m and βi,m, with |m| = k, we use the operators LΛ and KΛ defined by (10) and (11), re-
spectively. Their evaluation reduces by (14) and (15) to the evaluation of k-Taylor models of Fi ((ξ, 0) + φ(ξ))
and Fi ((0, η) + ψ(η)), respectively. The action of LΛ and KΛ on monomials are given by (12) and (13), and
yield the following formulae for αi,m and βi,m, respectively:

(16) αi,ms
=

[

Fi

(

(ξ, 0) + φk−1(ξ)
)]

ms

λms − (λ, µ)i

,

(17) βi,mu
=

[

Fi

(

(0, η) + ψk−1(x)
)]

mu

µmu − (λ, µ)i

.

Note that the coefficients at a certain level only depend on the previous levels. The reason is that F does
not contain constant or linear terms. This in turn allows for a recursive solution scheme of (14) and (15),
given by (16) and (17), respectively.

If n1 is sufficiently large, then the first n1 terms of φ and ψ produce a good approximation of a majorant
χ, and we use this to determine an approximate radius of convergence for χ. The validity of this radius of
convergence will now proved. As a first step we determine, using a least squares estimator, constants C and
M such that

(18) γk ≤ CMk, n0 < k ≤ n1.
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The equation (18) clarifies the introduction of the constant n0. It should be large enough to capture
transient phenomena in the sizes of the coefficients of χ, so that the estimate from (18) is a tight bound on
the coefficients in the tail of the power series of χ. The least squares estimation is done in two steps: first
a standard least squares approximation is computed, then we assume that M has been well approximated
and increase C until (18) holds. Thus, a candidate radius of convergence is

(19) rΘ :=
1

M
,

which needs to be verified.
We will consider a slightly larger majorant of χ. If

F (z) =
∞
∑

|m|=2

cmz
m ,

we define

ĉk :=
∑

|m|=k

max
1≤i≤d

{|ci,m|} ,

and set

F̂ (ω) =
∞
∑

k=2

ĉkω
k.

F̂ is clearly a majorant of Fi.
In our proof of convergence of the parametrisations we need a quadratic bound on F̂ . If the convergence

radius of F is s, we choose two other radii 0 < s′′ < s′ < s, and use Cauchy-type estimates on the ρ-tail of
F on Bs′ valid on Bs′′ , and then require that rΘ < s′′. We denote the bound on the tail Aρ

s′′ .
We define

(20) ArΘ
=

ρ
∑

k=2

ĉkr
k−2
Θ +A

ρ
s′′ .

Clearly, F̂ (z) ≤ A|z|2, on BrΘ
.

In [12], based on an idea from [24], the following proposition is proved for a similar majorisation process
of a different problem.

Proposition 3.1. If

ArΘ

Ω(n1 + 1)

(

2

n0
∑

k=1

γkr
k
Θ + n1C

)

< 1,

then Θ is analytic on BrΘ
.

The remainder terms in Theorem 2.2 are found by using the geometric bounds given by C and M . Since
we use the supremum norm, the uncertainties can appear in any component simultaneously. Therefore, the
remainders are added as B1 scaled with geometric bounds given by the bound on the growth of the γk’s.

4. Example

An algorithm proving the conditions of Lemma 2.1 and Theorem 2.2 has been implemented in a C++

program using the C-XSC package [6, 9] for interval arithmetic [1, 15, 16, 17]. For automatic differentiation
[8] we use a modified version of the Taylor arithmetic package [3].

There are several methods to compute local invariant manifolds of discrete dynamical systems, see e.g.
[18, 19, 26]. In principle, these methods can also be used for continuous dynamical systems by studying the
time–t map of the flow for some t. To compare with the method in [26], which is also able to treat flows, we
study a vector field of the same form as the discrete dynamical system studied in [18, 19, 26].

(21)

(

ẋ

ẏ

)

=

(

−0.4x+ x2 + y2

1.5y − x3 + y3

)
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Using n0 = 40, and n1 = 81, we compute (the computation takes a few seconds) rΘ = 0.30 and C =
1.65 × 10−4. These values yield the following bound on the error terms in Theorem 2.2:

1.65 × 10−4

(

|ζ|

0.3

)82 (

1 −
|ζ|

0.3

)−1

, for ζ ∈ B0.30.

The image Θ(B0.30) is shown in Figure 1. By inspection we see that the image contains the ball B0.16;
this can be compared with the convergence radius 0.18 with the bound 0.241138 on the Lipschitz constant
[27] for the cone enclosures of the local invariant manifolds using the method from [26]. For the convergence
radius 0.16, contained in Θ(B0.30), that method yields the Lipschitz constant 0.117195. This indicates that
a method to enclose local invariant manifolds on a larger domain could be to use the method [26] outside of
the Θ-image of the result of our method. To illustrate how the sizes of the enclosures grow as we approach
the convergence radius of Θ, we zoom in on the upper branch of the local unstable manifold in Figure 2.
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Figure 1. Enclosures of the local stable (blue) and unstable (red) manifolds in the example.
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Figure 2. The breakdown of convergence of the parametrisation of the local unstable
manifold in the example. As the local unstable manifold approaches the converges radius of
ψ, the uncertainty of its location, given by the remainder term in Theorem 2.2, becomes
unbounded.


