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Abstract

As modern molecular biology moves towards the analysis of biological systems as opposed to their indi-
vidual components, the need for appropriate mathematical and computational techniques for understand-
ing the dynamics and structure of such systems is becoming more pressing. For example, the modeling of
biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense
profiles is becoming more common-place, which is necessitating the development of improved techniques
to estimate model parameters from such data. Due to the high dimensionality of this estimation problem,
straight-forward optimization strategies rarely produce correct parameter values, and hence current meth-
ods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we
describe a completely deterministic approach, which is based on interval analysis. This allows us to examine
entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In partic-
ular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical
systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method
is amenable to the technique in interval arithmetic called constraint propagation, which allows great
improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks
of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating
0025-5564/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.mbs.2006.11.009

* Corresponding author.
E-mail addresses: warwick@math.uu.se (W. Tucker), zoltan.kutalik@unil.ch (Z. Kutalik), vincent.moulton@cmp.

uea.ac.uk (V. Moulton).

mailto:warwick@math.uu.se
mailto:zoltan.kutalik@unil.ch 
mailto:vincent.moulton@cmp. 


608 W. Tucker et al. / Mathematical Biosciences 208 (2007) 607–620
system parameters in the absence of noise, our method may also be used to recover the topology of these
networks.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The modeling and simulation of biochemical systems is currently receiving a great deal of
attention. This is in part due to the fact that techniques such as mass spectrometry and nuclear
magnetic resonance allow the gathering of time-dense profiles consisting of simultaneous mea-
surements of metabolites and proteins within the same cell, cell system or organism [25]. The
dynamics of these systems are commonly modeled using systems of ordinary differential equa-
tions that involve several parameters corresponding to, e.g., kinetic rates of underlying chemical
reactions [24]. In the past, the lack of experimental data made the estimation of large numbers
of parameters from biochemical measurements virtually impossible. The dramatic increase in
the availability and quality of high-throughput biological data, however, is starting to make
parameter estimation in principle feasible [25], although it still remains a difficult mathematical
and computational problem.

In mathematical terms, one form of the parameter estimation problem can be stated as follows:
assume that we are given a system of ordinary differential equations _x ¼ f ðx; pÞ, where the right-
hand side (the vector field) depends on a (multi-dimensional) parameter p. In biochemical mod-
eling, the entries of the vector x usually correspond to the concentration of some reactants. We
then aim to search for a particular parameter or parameters pw within a search space P such that
the solutions of the system _x ¼ f ðx; pHÞ match a given data set consisting of time samples of the
two vectors x and _x in some pre-specified manner.

In the setting of biochemical modeling various methods have been proposed for parameter esti-
mation (see e.g., [24, Chapter 5], [10] for overviews) including, more recently, numerical optimi-
zation methods [12], genetic algorithms [11], evolutionary optimization [22], and neural networks
[25]. These methods share the advantages and drawbacks of all global optimization approaches.
In particular, they often require good initial estimates for parameters, and they are prone to get-
ting trapped in local optima.

In [23] we describe a new approach for parameter estimation based on the theory of interval
analysis that can circumvent these two problems. In particular, given time samples of the vector
x and corresponding estimates of _x (derived using, e.g., methods described in [25]) yielding a
data set fxðtiÞ; _xðtiÞgM

i¼1 of concentrations of reactants and the rate of change of these concentra-
tions at times ti, we present a method that aims to capture information regarding the solution
set
Cf ðPÞ ¼ Cf ðP; fxðiÞ; _xðiÞgM
i¼1Þ ¼ fp 2 P : _xðiÞ ¼ f ðxðiÞ; pÞ i ¼ 1; . . . ;Mg
for a given search region P in parameter space. This set consists of all parameters that are consis-
tent with the data set.
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In essence, our method in [23] relies on the observation that the solution set Cf ðPÞ is the inter-
section of P with the (formal) inverse of the constraints _xðtiÞ ¼ f ðxðtiÞ; pÞ with respect to the
parameter p. Without any prior information regarding the vector field f, the solution set may have
a very complicated structure. Nevertheless, extending the vector field f to a set-valued function
enables us to determine when Cf ðPÞ is empty. Thus, given a compact, global search region P

we can form a finite partition P ¼ P1 [ . . . [ Pn, and discard all subsets Pi for which
Cf ðPiÞ ¼ ;. The union of the remaining subsets forms a covering of the solution set. By adaptively
refining the partition, we obtain an accurate covering in an effective manner.

In this paper, we extend this method in two ways. Although our technique can (in principle) be
applied to any system of finitely parameterized ordinary differential equations, in [23] we apply it
to a special class of such systems called S-systems [18–20,24]. Here we extend our method to the
more general class of biochemical models called Generalized Mass Action models (GMAs). More-
over, we show that this class of systems is amenable to constraint propagation – a technique com-
monly used in interval analysis. In particular, complementing the exclusion test described in the
previous paragraph, we can re-interpret the differential equation _x ¼ f ðx; pÞ as a set of constraints
that any solution must satisfy. These additional constraints allow us to discard portions of the
partition elements Pi, resulting in a contraction operator on the global search region P.

The rest of the paper is organized as follows. In Section 2 we give a short description of GMAs
and S-systems. In Section 3, we describe the underlying methods that we use, in particular provid-
ing a brief overview of interval analysis and constraint propagation. In Section 4 we describe how
these methods can be applied to obtain parameter estimates for GMAs, and an algorithm for
parameter estimation incorporating these techniques. In Section 5 we illustrate the applicability
of our algorithm to noise-free data by applying it to two examples of GMAs presented in
[24,25]. In Section 6 we make some concluding remarks.
2. Generalized mass action models and S-systems

In this section we briefly review GMAs and S-systems. A more detailed account of these con-
cepts may be found in, e.g., [21,24].

A generalized mass action model is a system of ordinary differential equations on the form
_xi ¼
XNi

j¼1

aij

Yd

k¼1

x
gijk
k ði ¼ 1; . . . ; dÞ: ð1Þ
Each variable xi (which assumes only positive values) represents the concentration of some reactant,
and _xi denotes the time derivative of xi. The parameters aij are known as rate constants, whereas the
parameters gijk are referred to as the kinetic orders. The interactions corresponding to the system are
usually summarized in the form of a network. For example, a GMA-system and the associated net-
work that is studied in [24, pp. 81–85] is presented in Fig. 1 (See also Section 5.1).

Each component of an GMA-system is made up of positive and negative terms, each corre-
sponding to individual reactions giving rise to the production and consumption of the substance
xi, respectively. To illustrate the significance of a generic term, consider
a12xg121
1 xg123

3 xg124
4 ¼ 3:5x0:5

1 x�0:3
3 x2

4:



Fig. 1. A branched pathway with feedback inhibitions (left), together with the corresponding GMA-system (right).

610 W. Tucker et al. / Mathematical Biosciences 208 (2007) 607–620
This is the second term of the first component ð _x1Þ, and describes a reaction contributing to the
production of x1, since the rate constant a12 = 3.5 is positive. Furthermore, it tells us that this
reaction directly involves x1, x3, and x4. Finally, we are informed that whereas x1 and x4 promote
the production of x1 (their corresponding kinetic orders are positive), x3 inhibits the very same
production (g123 = �0.3 is negative).

In regards to GMA models, the parameter estimation can be divided into two sub-tasks: First,
one may determine the network topology. This is a qualitative property of the system that de-
scribes whether a substance decreases or enhances the rate of a reaction. The focus of this stage
is to determine which parameters are non-zero. Second, one is interested in the rate at which the
synthesis/degradation occurs. This quantitative information corresponds to finding approximate
values of the non-zero parameters.

S-systems are a special class of GMAs having two terms per component; one corresponding to
the production, and one corresponding to the degradation of the reactant. An S-system can be
considered as a condensed version of a GMA-system, obtained by aggregating individual reac-
tions into the net processes of synthesis and degradation – see [21,24] for a detailed account of
this procedure. In particular, such a system consists of a system of ordinary differential equations
of the form
Fig. 2
_xi ¼ ai

Yd

k¼1

xgik
k � bi

Yd

k¼1

xhik
k ði ¼ 1; . . . ; dÞ;
with non-negative rate constants ai and bi and real-valued kinetic orders gij and hij. An S-system
and its associated network that is described in [25] and that we study later in Section 5.2, is pre-
sented in Fig. 2.

One important difference between S-systems and GMA-systems is that, given the dimension d
of the system, an S-system has a bounded number 2d(d + 1) of possible parameters to be
. A branched pathway with activations and inhibitions (left), together with the corresponding S-system (right).
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reconstructed. This is not so in the case of GMA-systems. Therefore, for large systems, one must
be given (more or less) the topology of an GMA-system in advance.
3. Methods

3.1. Interval analysis

Here, we will briefly describe the fundamentals of interval analysis. For a concise reference on
this topic, see, e.g., [1,13,14].

Let IR denote the set of closed intervals. For any element A 2 IR, we adopt the notation
A ¼ ½A;A�. Thus ‘a 2 A’ means ‘the point a belongs to the interval A’. If w is one of the oper-
ators +, � , · , � , we define the arithmetic on elements of IR by
AHB ¼ faHb : a 2 A; b 2 Bg;

except that A� B is undefined if 0 2 B. Working exclusively with closed intervals, we can describe
the resulting interval in terms of the endpoints of the operands:
Aþ B ¼ ½Aþ B;Aþ B�;
A� B ¼ ½A� B;A� B�;
A� B ¼ ½minðAB;AB;AB;ABÞ;maxðAB;AB;AB;ABÞ�;
A� B ¼ A� ½1=B; 1=B�; if 0 62 B:

ð2Þ
When computing with finite precision, directed rounding must also be taken into account (see e.g.,
[13,14]).

A key feature of interval arithmetic is that it is inclusion monotonic, i.e., if A � X, and B � Y,
then
AHB � XHY; ð3Þ
where we require that 0 62 Y for division.
One of the main reasons for passing to the interval realm is that we want a simple way of

enclosing the range R(f;D) = {f(x) :x 2 D} of a real-valued function f : D! R. Except for the
most trivial cases, mathematics provides few tools to describe this set.

We begin by extending the real functions to interval functions. By this, we mean functions that
take and return intervals rather than real numbers. Interval arithmetic (2) provides the theory of
extending rational functions, i.e., functions on the form f(x) = p(x)/q(x), where p and q are poly-
nomials. Simply substituting all occurrences of the real variable x with the interval variable X

(and the real arithmetic operators with their interval counterparts) produces a rational interval
function F ðXÞ, called the natural interval extension of f. As long as no singularities are encoun-
tered, we have the inclusion
Rðf ; XÞ � F ðXÞ; ð4Þ
by property (3). In fact, this type of range enclosure can be achieved for any reasonable
function.
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Example 3.1. Let f(x) = 7/(3 + x), and consider the domain x 2 [0, 100]. By the inclusion property
(4), we have the following range enclosure:
Rðf ; ½0; 100�Þ � F ð½0; 100�Þ ¼ 7

3þ ½0; 100� ¼
7

½3; 103� ¼
7

103
;
7

3

� �
:

In this particular case, the enclosure is sharp, i.e., we have R(f;[0,100]) = F([0,100]).

Higher-dimensional functions f : Rn ! R can be extended to an interval function F : IRn ! IR

in a similar manner. The function argument is then an interval-vector X ¼ ðX1; . . . ;XnÞ, which we
also refer to as a box.

Example 3.2. Consider the first component of a two-dimensional S-system:
_x1 ¼ a1xg11
1 xg12

2 � b1xh11
1 xh12

2 ;
together with the parameter domains a1 2 [0,4], b1 2 [1,3], and g1j,h1j 2 [ � 1,1], j = 1,2. By the
inclusion property (4), we have the following range enclosure for the vector field, evaluated at
the data point (x1,x2) = (1,2):
_x1 �½0; 4�1½�1;1�2½�1;1� � ½1; 3�1½�1;1�2½�1;1�

¼½0; 4� 1

2
; 2

� �
� ½1; 3� 1

2
; 2

� �
¼ ½0; 8� � 1

2
; 6

� �
¼ �6; 7

1

2

� �
;

which coincides with the exact range of slopes.

Interval analysis can be extended to an exception-free system by redefining the interval exten-
sion process. Without going into details, this makes all operations well-defined (including division
by zero), see [26]. This extension is heavily used in our examples, where we are repeatedly com-
puting logarithms of sets containing negative numbers.

There exist several open source programming packages for interval analysis [3,7,16], as well as
commercial products such as [5].

3.2. Constraint propagation

The basic idea behind constraint propagation is to view a single equation y = f(x) as a set of
constraints that must be satisfied by the solution(s) of the original equation. Viewed as set-valued
functions, these constraints often act as contractors, i.e., propagating the original search domain
through the constraints often produces a smaller domain.

Example 3.3. As a first example, consider the equation y ¼ x3
1 þ x2, which can be recast as

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
y� x2

3
p

and x2 ¼ y� x3
1. Given a search domain X1 �X2, we can impose the constraints

x1 2 X1 \
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�X2

3
p

and x2 2 X2 \ ðy�X3
1Þ on all solutions. Taking y = 2, and looking for a

solution with (x1,x2) 2 [0,1] · [0,1], the constraints produce
x1 2X1 \
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�X2

3
p

¼ ½0; 1� \
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ½0; 1�3

p
¼ ½0; 1� \

ffiffiffiffiffiffiffiffiffiffi
½1; 2�3

p
¼ ½0; 1� \ ½1;

ffiffiffi
2

3
p
� ¼ f1g;

x2 2X2 \ ðy�X3
1Þ ¼ ½0; 1� \ ð2� ½0; 1�

3Þ ¼ ½0; 1� \ ð2� ½0; 1�Þ ¼ ½0; 1� \ ½1; 2� ¼ f1g
which actually happens to give the (unique) solution within the domain.
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In general, we are not so fortunate as in this example, but the constraints do often contract the
components of the search domain.

Example 3.4. As a second example, consider again the first component of a two-dimensional S-
system:
_x1 ¼ a1xg11
1 xg12

2 � b1xh11
1 xh12

2 :
This equality can be recast as, e.g., a constraint for the parameter g12:
g12 ¼
1

log x2

log
_x1 þ b1xh11

1 xh12
2

a1xg11
1

� �
:

Given the same parameter domains and data point as in Example 3.2, and given the slope estimate
_x1 ¼ 5, this constraint produces
g12 2½g12� \
1

log x2

log
_x1 þ ½b1�x

½h11�
1 x½h12�

2

½a1�x½g11�
1

 !
¼ ½�1; 1� \ 1

log 2
log

5þ ½1; 3�1½�1;1�2½�1;1�

½0; 4�1½�1;1�

 !

¼½�1; 1� \ 1

log 2
log

5þ ½1; 3�½1
2
; 2�

½0; 4�

� �
¼ ½�1; 1� \ 1

log 2
log

½5 1
2
; 11�
½0; 4�

� �

¼½�1; 1� \ 1

log 2
log

11

8
;þ1

� �
¼ ½�1; 1� \

log 11
8

log 2
;þ1

� �
¼ log 11

log 2
� 3; 1

� �
� ½0:4594; 1:0�:
Here the constraint contracted the domain for g12 by a factor �3.7, despite involving a (well-
defined) division by zero. Analogous procedures can be carried out for the remaining
parameters.

By iterating the contractions, in combination with a partitioning scheme, the solution set is rap-
idly obtained. Furthermore, if we, somewhere in the process, encounter an empty intersection,
then we have proved that no solution exists within the given domain. For a thorough treatment
of constraint propagation techniques, see [8] and references therein.
4. Parameter estimation

In this section, we shall show that constraint propagation is well-suited to parameter estimation
in GMA-systems. Recall that a component of such a system can be expressed as
_x ¼
XN

i¼1

ai

Yd

j¼1

x
gij
j :
As described in [23,25], we assume that the GMA-system in question can be decoupled into d
independent sets of algebraic equations. This assumes that we are given the values of the vari-
ables x1, . . . ,xd and the slope _x at various time points, i.e., a data set of the form fxðtiÞ; _xðtiÞgM

i¼1.
An alternative approach, which does not rely on decoupling, is to work directly on the full set
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of ODEs. Some progress in this direction has been made in [9,17], but only for very small
systems.

Our task is to use the data set to estimate the parameters ai and gij, given their associated search
domains Ai and Gij, respectively. In this situation, the set-valued constraints for the rate constants
become
ak2 Ak \ _x�
XN

i¼1
i 6¼k

Ai

Yd

j¼1

xGij
j

0
BB@

1
CCA

0
BB@

,Yd

j¼1

xGkj
j

1
CCA; ð5Þ
whereas, for the kinetic orders, we have (compare with Example 3.4)
gk;‘2 Gk;‘ \ log _x�
XN

i¼1
i6¼k

Ai

Yd

j¼1

xGij
j

0
BB@

1
CCA

0
BB@

,
Ak

Yd

j¼1
j6¼‘

x
Gkj
j

0
BB@

1
CCA
1
CCA
,

log x‘: ð6Þ
In order to keep the formulas to a minimum, we introduce the following short-hand notations:
Akð _x; x;A;GÞ¼ _x�
XN

i¼1
i 6¼k

Ai

Yd

j¼1

xGij
j

0
BB@

1
CCA
,Yd

j¼1

x
Gkj
j ;

Gk‘ð _x; x;A;GÞ¼ log _x�
XN

i¼1
i6¼k

Ai

Yd

j¼1

xGij
j

0
BB@

1
CCA

0
BB@

,
Ak

Yd

j¼1
j6¼‘

x
Gkj
j

0
BB@

1
CCA
1
CCA
,

log x‘:
Note that Ak does not depend on the interval parameter Ak, and similarly, Gk‘ does not depend on
Gk‘. The fact that we can completely factor out each parameter improves the efficiency of the con-
straints, but it is not necessary for the method to work, see [8].

Given the data fxðtiÞ; _xðtiÞgM
i¼1 we have M constraints per parameter to propagate through:
ak 2 Ak \Akð _xðtiÞ; xðtiÞ;A;GÞ
gk;‘ 2 Gk;‘ \ Gk‘ð _xðtiÞ; xðtiÞ;A;GÞ

ði ¼ 1; . . . ;MÞ: ð7Þ
There are several possibilities to apply these constraints; we choose to loop through all parameters
at each time-step. This procedure is implemented in Algorithm 4.1, where we write a and g in place
of the boxes A and G, respectively. Line 5 in the code corresponds to Eq. (5), and line 9 corre-
sponds to Eq. (6). Note that we check for consistency immediately after each constraint is applied
(lines 6 and 10). Here, consistency simply means that the contracted domain is still non-empty. If
this is not the case, we immediately terminate the process, returning the boolean value false. If,
on the other hand, all constraints are consistent with the data, the procedure returns the value
true. As a side effect, it also modifies the parameter boxes a and g according to any contractions
incurred by the constraints.
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Algorithm 4.1.
1
 bool constraintPropagate(a, g, xDot, x) // Modifies parameter boxes a and g.
2
 {

3
 for (int i = 1; i <= M; i++) // Loop through M sample points.
4
 for (int k = 1; k <= N; k++){ // Loop through N rate constants.
5
 a(k) = intersection(a(k), A(k, xDot(i), x(i), a, g));
6
 if ( isEmpty(a(k)) )
7
 return false;
8
 for (int l = 1; l <= d; l++){ // Loop through d kinetic orders.
9
 g(k,l) = intersection(g(k,l), G(k, l, xDot(i), x(i), a, g));
10
 if ( isEmpty(g(k,l)) )
11
 return false;
12
 }

13
 }

14
 return true;
15
 }
4.1. The main algorithm

Given the data fxðtiÞ; _xðtiÞgM
i¼1 generated from some target system, the search for feasible param-

eter values is divided into d component-wise searches. In what follows we will focus on a single
such search.

Each search takes place within a global parameter region P, which is initialized as a box whose
bounds are determined by biochemical knowledge, see e.g., [21,24]. In principle, our method can
take a search region of any size, and still produce a valid result; the computational cost is
discussed in Section 5.4. As a first step, we initialize a list parameterList with the
unique element P. This list is then passed on to the main loop of our search algorithm, listed
in Algorithm 4.2:

Algorithm 4.2.
1
 while ( isEmpty(parameterList) = = false ) {

2
 parameter = getCurrent(parameterList); // Here, parameter = (a, g)
3
 if ( constraintPropagate(parameter, dataSet) ) // and dataSet = (xDot, x).
4
 if ( Diameter(parameter) < Tol )
5
 store(parameter, resultList);
6
 else
7
 splitAndStore(parameter, parameterList);
8
 }
Within this loop, each member of parameterList is tested via the constraints (5) and (6) (on
line 3). If these constraints produce a non-empty result, there are two possibilities: either the diam-
eter of the parameter box is smaller than some pre-assigned tolerance Tol, in which case the box
is stored in a second list resultList (line 5); otherwise the parameter box is bisected along its
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widest component,1 and the two resulting sub-boxes are returned to parameterList (line 7) for
further investigation. If, however, the constraints produce an empty set, the current parameter
box is excluded from the remaining search (we go from line 3 directly to line 8). When the search
terminates (the argument of line 1 evaluates to false), resultList contains all sub-boxes of
size �Tol satisfying the constraints. If this list is empty, we have established that the correspond-
ing network topology is not consistent with our data at this level of resolution. If, on the other
hand, the list has elements P1; . . . ;PK , we can form a guaranteed enclosure PH of the solution
set Cf ðPÞ by simply taking the union of all elements of the list: PH ¼ [K

i¼1Pi.

It is not unusual to have access to sample data from several trajectories, that is, trajectories
emanating from different initial points x(1)(t1), . . . ,x(R)(t1). We can then augment the constraints
(7) to take this additional information into account:
1 Th
ak 2 Ak \Akð _xðjÞðtiÞ; xðjÞðtiÞ;A;GÞ
gk;‘ 2 Gk;‘ \ Gk‘ð _xðjÞðtiÞ; xðjÞðtiÞ;A;GÞ:

ði ¼ 1; . . . ;M ; j ¼ 1; . . . ;RÞ ð8Þ
This additional data improves our method, seeing that it becomes easier to contract/discard
parameter regions. In our experience we have found that it is often wiser to extend the sample data
by adding samples from new trajectories (increasing R), rather than increasing the number of sam-
ples points (M) on already existing trajectories.
5. Computational results

To illustrate the applicability of our method we apply it to two low-dimensional GMA-systems
(one of which is an S-system) considered in [24,25]. As in [25] (and [11,15,22] where similar low-
dimensional examples are considered), to examine the performance of our method under optimal
conditions we use noise-free data.

Time-series data fxðtiÞgM
i¼1 was generated via the MATLAB ode45 solver. In addition, to decou-

ple the systems we supplemented the data with slopes f _xðtiÞgM
i¼1 obtained by evaluating the differ-

ential equations at the data points. It should be pointed out that the sample times t1, . . . , tM are
non-uniformly distributed. We chose a logarithmic distribution of the sample times, in order to
capture the higher initial reaction rates.

The actual parameter estimation was carried out by a C++ program, utilizing the PROFIL/
BIAS interval package [16]. The computations were performed on a single 1200 MHz Intel
Pentium M processor using 384MB of RAM.

5.1. A 3-dimensional GMA-system

We first consider the GMA-system (also studied in [15]) presented in Fig. 1.
Here, the topology is assumed to be known, i.e., we know which parameters appear as non-zero

quantities in the differential equation. Furthermore, we also use information regarding dependen-
cies. More precisely, we know that the second term of the first component matches the first term
is is the simplest, but by no means the most effective subdivision strategy.
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of the second component, and that the third term of the first component matches the first term of
the third component. Thus, all in all, we are to determine the values of 13 distinct parameters,
arranged in two 5-dimensional problems (the parameters of the second and third components,
respectively), and one 3-dimensional problem (the three leading parameters of the first
component).

For the computations, we used 10 sets of initial conditions, and each trajectory was sampled at
20 points in time. The search region for each kinetic order gij and rate constant ai was formed by
embedding each true parameter value in an interval with a radius proportional to the modulus of
the true value, e.g., Ai ¼ ½ð1� qÞai; ð1þ qÞai�. The relative radii (100q) considered were
{0,10,50,100,200,300,400,500}. The stopping tolerance was set to 1 · 10�4 for the second and
third component of the GMA-system. This produced parameter enclosures no wider than
4.61 · 10�4. These were then inserted into the first component of the GMA-system, after which
the remaining three parameters were solved for using the tolerance 1 · 10�3. This setup produced
the correct parameter values rounded to three significant digits.

In Table 1, we present the timings for the estimation, as well as the number of parameter boxes
examined during the search.

We were surprised to note that the 3-dimensional subproblem (estimating the three leading
parameters of the first component) was immediate. By this, we mean that the search only required
one single pass through the constraints before satisfying the stopping tolerance. This resembles the
situation presented in Example 3.3, illustrating the potential strength of using constraints as con-
traction mappings.

5.2. A 4-dimensional GMA-system

Our second example presented in Fig. 2 falls into the category of S-systems.
Again, the topology is assumed to be known, i.e., we know which parameters appear as non-

zero quantities in the differential equation. Contrary to the previous example, however, we no
longer use any information regarding dependencies. That is, we do not use the fact that the second
term of the second component matches the first term of the third component, and so on. Thus, all
in all, we are to determine the values of 17 distinct parameters, arranged in three 4-dimensional
problems (the parameters of the first, second and fourth components, respectively), and one
5-dimensional problem (the parameters of the third component).

For the computations, we used 5 sets of initial conditions, and each trajectory was sampled at
20 points in time. The search region for each kinetic order gij and rate constant ai was formed by
embedding each true parameter value in an interval with a radius proportional to the modulus of
the true value, e.g., Ai ¼ ½ð1� qÞai; ð1þ qÞai�. The relative radii (100q) considered were again
{0,10,50,100,200,300,400,500}. The stopping tolerance was set to 1 · 10�3, which in all cases
produced the correct parameter values rounded to three significant digits. In Table 2, we present
Table 1
The computational effort for the GMA-system

Relative radius (%) 0 10 50 100 200 300 400 500
CPU time (seconds) 0.02 3.99 5.08 5.68 6.88 8.50 10.77 13.63
Examined boxes 3 827 1067 1185 1463 1835 2341 3063



Table 2
The computational effort for the S-system

Relative radius (%) 0 10 50 100 200 300 400 500
Time (in seconds) 0.00 2.22 2.94 3.24 3.55 3.83 4.03 4.36
Examined boxes 4 734 988 1072 1190 1292 1376 1494
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the timings for the estimation, as well as the number of parameter boxes examined during the
search.

In [23,25], the search region for each of the kinetic orders gij was set to [�1, +1], whereas the
rate constants ai were sought for within the domain [0,20]. Using the same data set and stopping
tolerance as above required a total running time of 4.09 s, assuming the correct topology, but
using no prior information regarding dependencies. During the search a total of 1364 parameter
boxes were examined. The estimated parameter values were, again, correct to at least three signif-
icant digits.

5.3. Determining the topology

To further test our method, we also examined its ability to determine the topology of the S-sys-
tem just described. As a consequence of our set-valued approach, the proposed method discards
incorrect topologies very rapidly. Therefore, we can search through increasingly dense topologies
until we find the ‘sparsest match’. Starting with topologies of cardinality one (i.e., those having
only one non-zero kinetic parameter), it took 55 s to find the solution, and an additional 14 s
to complete the search through the remaining topologies of the same cardinality as the solution.
This should be compared to the method presented in [23], which took 3.5 h on a slightly more
challenging problem (using the exact same hardware). The timings (�15 min) reported in [25] were
based on a more powerful computer and correspond to a run-time of roughly 1 h. Furthermore,
the parameter values obtained in [25] were only correct to one significant digit.

5.4. Computational complexity

Given the topology of an GMA-system, the worst-case computational complexity of our meth-
od is proportional to drk, where d is the dimension of the system, k is the maximal number of non-
zero parameters in a single component, and r is the size of the largest search domain for a single
parameter. Thus, if k� d, then an increase in the dimension only incurs a linear increase in com-
putational cost. For many biochemical systems, this is indeed often the case: only a very limited
number of components react directly with each other. With regards to the size of the search do-
main, the observed performance of our method is not as bad as one could expect: doubling the
width of a single parameter domain seldom doubles the computational cost. This is most likely
due to the efficient exclusion/contraction of subdomains.

If the topology is unknown, but a template GMA-system with say m potentially non-zero
parameters per component is given, then the upper bound becomes d m

k

� �
rk. In the special case

of the S-systems, we always have m 6 2(d + 1), and the upper bound becomes d 2ðdþ1Þ
k

� �
rk.

Since we generally assume no information regarding dependencies, all d searches can be per-
formed in parallel, which then reduces the complexity bound by a factor d. In the situation where
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we do have access to the systems’s dependencies, this can be used to considerably reduce the com-
putational cost. For a serial computation of a d-dimensional system, one would simply insert the
already computed parameter enclosures into the remaining components before reconstruction.
For a parallel computation, there would have to be some interprocess communication, where
the current enclosures for the same parameters are intersected.
6. Concluding comments

We have presented a novel method for estimating parameters using interval analysis in com-
bination with constraint propagation. In particular, we have applied it to estimate parameters in
GMA-systems and obtained results that improve upon previously described parameter estima-
tion methods in this setting. We stress that the proposed method is quite general, and can (in
principle) be applied to any system of finitely parameterized differential equations. It can also
be used as a pre-processing stage for any other solver, seeing that it simply contracts the global
search space.

Our method differs in a fundamental way from the main-stream parameter estimation methods
in that we solve the problem by a pruning scheme based on a contraction principle, rather than
recasting the estimation as a global minimization problem. One advantage with this approach is
that, with a finite dataset, there is no reason to expect a unique solution. In fact, several disjoint
regions in parameter space could be the natural answer. As our method simply contracts/discards
portions of the parameter space under scrutiny, according to their consistency with the underlying
data, it can handle this scenario with only small modifications in the I/O routines.

The transition to set-valued vector fields also allows us to dismiss unrealistic network topolo-
gies. In particular, this allows us to detect when the model we are trying to fit to the provided data
is not appropriate; with a sufficiently small stopping tolerance, our method will then discard all
parameter values.

To demonstrate the performance of our new method we have chosen some rather low-dimen-
sional, noise-free examples, which are somewhat unrealistic. Our point, however, is to first inves-
tigate our proposed method under optimal conditions, in much the same way that the
performance of the methods introduced in [11,15,22,25] is examined. Although some kind of
pre-processing (e.g., smoothing) can significantly reduce if not remove noise, degradation of
the performance of our method due to noisy data and comparison with other methods needs
to be studied next. In principle, the described method is already geared to work for noisy data:
instead of data points (ti,xi, si), we can use intervals ðTi;Xi;SiÞ with almost no change to the code
at all. The main challenge is to obtain reasonably good slope ranges Si from the noisy data.
Therefore, we think that our method is likely to work well for noisy data for large data sets,
but not for sparse, noisy data. Moreover, in light of our new method’s potential for paralleliza-
tion, we will need to start investigating its performance for much larger systems.

Ultimately, it is unrealistic to expect a reconstruction method to provide tight parameter esti-
mates for most biological systems. Small data sets may not always suffice to uniquely determine
the structure of the underlying system, and, perhaps more importantly, it may be the case the sev-
eral solutions are consistent with the data [25]. In these situations, however, it should be possible
to adapt our method to produce disjoint sets of solutions, thus providing biologists with alterna-
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tive models from which to select, and directions for new experiments to distinguish between the
various alternatives.
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