
Reconstructing Metabolic Networks Using
Interval Analysis

Warwick Tucker1 and Vincent Moulton2

1 Department of Mathematics, Uppsala University, Box 480, Uppsala, Sweden
warwick@math.uu.se

http://www.math.uu.se/~warwick
2 School of Computing Sciences, University of East Anglia,

Norwich, NR4 7TJ, UK
Vincent.Moulton@cmp.uea.ac.uk

http://www.cmp.uea.ac.uk

Abstract. Recently, there has been growing interest in the modelling
and simulation of biological systems. Such systems are often modelled in
terms of coupled ordinary differential equations that involve parameters
whose (often unknown) values correspond to certain fundamental prop-
erties of the system. For example, in metabolic modelling, concentrations
of metabolites can be described by such equations, where parameters cor-
respond to the kinetic rates of the underlying chemical reactions. Within
this framework, the increasing availability of time series data opens up
the attractive possibility of reconstructing approximate parameter val-
ues, thus enabling the in silico exploration of the behaviour of complex
dynamical systems. The parameter reconstruction problem, however, is
very challenging – a fact that has resulted in a plethora of heuristics
methods designed to fit parameters to the given data.

In this paper we propose a completely deterministic method for pa-
rameter reconstruction that is based on interval analysis. We illustrate its
utility by applying it to reconstruct metabolic networks using S-systems.
Our method not only estimates the parameters very precisely, it also
determines the appropriate network topologies. A major strength of the
proposed method is that it proves that large portions of parameter space
can be disregarded, thereby avoiding spurious solutions.

1 Introduction

A well-known and difficult problem in metabolic modeling is that of parameter
reconstruction. A metabolic model is often given in terms of a system of ordinary
differential equations ẋ = f(x; p), where the right-hand side (the vector field)
depends on a (multi-dimensional) parameter p. The problem is then to search for
a particular p� within a parameter space P such that the solutions of the system
ẋ = f(x; p�) match a given data set, in some pre-specified manner. Typically, the
data set is a time series, that is, samples taken along one or several trajectories
of the target system.

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 192–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reconstructing Metabolic Networks Using Interval Analysis 193

As in many other settings, parameter reconstruction in metabolic modelling
is often recast as a global optimization problem. Due to the high dimension-
ality of the problem, however, straight-forward optimization strategies rarely
produce accurate parameter values. Today, most methods used for parameter
reconstruction are thus based on heuristic algorithms such as, for example, ma-
chine learning, genetic algorithms and PL-models – see [9] for a recent overview.
In this paper, we describe a very general and completely deterministic approach
to solving the parameter reconstruction problem, which is based on interval anal-
ysis. This allows us to examine entire sets of parameters, and thus to exhaust
the global search within a finite number of steps.

Although our new approach is very general, we will focus on a particular class
of differential equations commonly used to model biochemical networks, known
as S-systems [17]. These have been extensively studied (see e.g. [5,3,10,7,18]),
and have the appealing feature that the underlying metabolic network topol-
ogy can be estimated along with the other parameters. In addition, several
methods have been recently described for parameter reconstruction in S-systems
(e.g. [10,18,16]).

2 Methods

2.1 Component-Wise Reconstruction via Slopes

Suppose that we are given a d-dimensional system of ordinary differential equa-
tions ẋ = f(x; p), sampled at N distinct times (excluding the initial point, which
is assumed to be known at time t0), producing the data set {x(tj)}N

j=0, where
each sample x(tj) = (x1(tj), . . . , xd(tj)) has d components. Rather than attempt-
ing to reconstruct parameters by solving the entire system ẋ = f(x; p), it can be
more helpful to obtain more detailed information localized at individual sample
points. One way to do this is to use the samples to reconstruct the trajectories
(e.g. via piece-wise splines) with some degree of smoothness. This enables the
computation of an approximation of the vector field at each sample point:

si,j ≈ fi(x(tj); p�), i = 1, . . . , d; j = 0, . . . , N.

The number si,j corresponds to the slope of the trajectory’s i:th component at
time tj , see Figure 1.

Fig. 1. (a) One component of a trajectory. (b) Sample data with slopes.

194 W. Tucker and V. Moulton

Equipped with this enhanced sample data, we can try to locate a point in P

that minimizes the defect :

∆(p) =
d∑

i=1

∆i(p) def=
d∑

i=1

N∑

j=0

‖fi(x(tj); p) − si,j‖,

for some convenient norm ‖ · ‖. Using the defect as a measurement of quality is
not new, see e.g. [6] or, in the context of S-systems, [18]. The major advantage of
this approach is that the system decouples, i.e., the computation of each ∆i(p)
depends only on a fraction of the total number of parameters: ∆i(p) = ∆i(pi),
where pi ∈ Pi, and P = P1 ⊕ · · · ⊕ Pd.

Assuming that each pi has k (potential) components, the total dimension of
the entire search space P is dk. Rather than searching through a dk-dimensional
space, access to the enhanced sample data allows us to perform d independent
searches in k-dimensions. The gain is immediate: introducing M grid-points in
each parameter domain produces Mdk points in the first case, but only dMk

points in the latter. This gives a speed-up factor of Md/d.
We point out that, at present, our proposed computation of the slopes is not

very noise-tolerant. There are, however, several possible remedies that we aim to
explore in the future. One possibility is to use piece-wise splines with set-valued
coefficients. This approach fits well into the framework that we present below.
Another option is to simply smooth the data (via e.g. least-squares) before fitting
the splines.

2.2 Interval-Valued Slopes

Our approach is a modification of the enhanced data method, and therefore
shares the same attractive decomposition property of the global parameter space
P. The major improvement is that we now compute ranges of slopes for entire
domains of parameters. In essence, we extend the vector field f to a set-valued
function F , accepting solid blocks in parameter space as input. The theoretical
justification for this type of extension is given shortly. Let [pi] denote a box in
Pi, i.e., each component of [pi] is an interval. Then, for any point pi ∈ [pi], we
have

fi(x(tj); pi) ∈ Fi(x(tj); [pi]),

i.e., the set Fi(x(tj); [pi]) contains all possible slopes corresponding to parameters
taken from the box [pi]. This fact gives us a simple criterion for discarding
portions of the search space Pi: if a box [pi], at a sample point x(tj), produces a
range of slopes such that si,j /∈ Fi(x(tj); [pi]), then no parameter in [pi] can have
generated the sample data. If this situation occurs, we say that the parameter
box [pi] violates the cone condition at time tj , see Figure 2.

Our strategy in reconstructing the target parameter p� is to adaptively parti-
tion each space Pi into successively smaller sub-boxes, retaining only those that
satisfy the cone condition at all times. At some pre-selected level of coarseness,

Reconstructing Metabolic Networks Using Interval Analysis 195

Fig. 2. (a) Cone condition satisfied at t0, t1, t2, and t3. (b) Violated at time t2.

we terminate the process, and are left with a collection of boxes [p(1)
i], . . . , [p(n)

i],
each of which satisfies I([p(j)

i]) = true, where

I([pi]) =
N∧

j=0

(
si,j ∈ Fi(x(tj); [pi])

)
(1)

is a boolean function that returns true if [p] satisfies the cone condition at all
sample times, and false otherwise.

2.3 Interval Analysis

Here, we will briefly describe the fundamentals of interval analysis. For a concise
reference on this topic, see e.g. [12].

Let IR denote the set of closed intervals. For any element [a] ∈ IR, we adapt
the notation [a] = [a, ā]. Thus “x ∈ [x]” means “the point x belongs to the
interval [x]”. If � is one of the operators +, −, ×, ÷, we define the arithmetic on
elements of IR by

[a] � [b] = {a � b : a ∈ [a], b ∈ [b]},

except that [a] ÷ [b] is undefined if 0 ∈ [b]. Working exclusively with closed
intervals, we can describe the resulting interval in terms of the endpoints of the
operands:

[a] + [b] = [a + b, ā + b̄]
[a] − [b] = [a − b̄, ā − b] (2)
[a] × [b] = [min(ab, ab̄, āb, āb̄), max(ab, ab̄, āb, āb̄)]
[a] ÷ [b] = [a] × [1/b̄, 1/b], if 0 /∈ [b].

When computing with finite precision, directed rounding must also be taken into
account (see e.g. [11,13]).

A key feature of interval arithmetic is that it is inclusion monotonic, i.e., if
[a] ⊆ [A], and [b] ⊆ [B], then

[a] � [b] ⊆ [A] � [B], (3)

where we demand that 0 /∈ [B] for division.

196 W. Tucker and V. Moulton

One of the main reasons for passing to the interval realm is that we want
a simple way of enclosing the range R(f ; D) = {f(x) : x ∈ D} of a real-valued
function f : D → R. Except for the most trivial cases, mathematics provides few
tools to describe this set.

We begin by extending the real functions to interval functions. By this, we
mean functions that take and return intervals rather than real numbers. Interval
arithmetic (2) provides the theory of extending rational functions, i.e., functions
on the form f(x) = p(x)/q(x), where p and q are polynomials. Simply substitut-
ing all occurrences of the real variable x with the interval variable [x] (and the
real arithmetic operators with their interval counterparts) produces a rational
interval function F ([x]), called the natural interval extension of f . As long as no
singularities are encountered, we have the inclusion R(f ; [x]) ⊆ F ([x]), by prop-
erty (3). In fact, this type of range enclosure can be achieved for any reasonable
function [12].

Higher-dimensional functions f : R
n → R can be extended to an interval

function F : IR
n → IR in a similar manner. The function argument is then an

interval-vector [x] = ([x1], . . . , [xn]), which we also refer to as a box.
There exist several open source programming packages for interval analysis

[4,8,14].

2.4 S-Systems

An S-system is a system of ordinary differential equations on the form:

ẋi = αi

d∏

j=1

x
gij

j − βi

d∏

j=1

x
hij

j (i = 1, . . . , d). (4)

Each variable xi represents the concentration of some reactant, and ẋi denotes
the time derivative of xi. In a biochemical context, the non-negative param-
eters αi and βi are called rate constants. The real-valued parameters gij and
hij are referred to as the kinetic orders. Each component of an S-system is
made up of one positive and one negative term, corresponding to the production
and consumption of the substance xi, respectively. In essence, an S-system is
a condensed version of a more general GMA – General Mass Action – model,
obtained by aggregating individual reactions into the net processes of synthesis
and degradation, see [15].

Using the following short-hand notation for the parameters

pi = (αi, gi1, . . . , gid, βi, hi1, . . . , hid) (i = 1, . . . , d),

we can express (4) more compactly as ẋi = fi(x; pi). The entire S-system then
becomes ẋ = f(x; p). A d-dimensional S-system has 2d(d + 1) parameters, so
already for small systems the number of parameters becomes unwieldy. We re-
duce the number of parameters by assuming that no reactant xj influences both
the rate of production and the rate of degradation of another reactant xi (see
[1,18]). This assumption can be reformulated more succinctly as:

Reconstructing Metabolic Networks Using Interval Analysis 197

0 1 1
1 0 0
0 1 0

synthesis

1 0 0
0 1 0
0 0 1

degradation

x1

x2

x3

α1 0 g12 g13

α2 g21 0 0
α3 0 g32 0

β1 h11 0 0
β2 0 h22 0
β3 0 0 h33

Parameter configuration

Fig. 3. A boolean topology encodes a metabolic network, and determines the parameter
configuration of the S-system in (6)

gij �= 0 ⇒ hij = 0, (5)

and reduces the total number of non-zero parameters to d(d + 2), although we
now must consider 2d different parameter configurations for each component of
the vector field fi. Nevertheless, this is a good trade: filling each of the 2(d + 1)
parameter domains of fi with M grid-points produces M2(d+1) points, compared
to 2dMd+2 points when using (5). This gives a speed-up factor of (M/2)d.

A simple example of an S-system (appearing in [17] pp. 179-184) is given by:

ẋ1 = 7.5x−0.1
2 x−0.05

3 − 5x0.5
1

ẋ2 = 2x0.5
1 − 1.44x0.5

2 (6)
ẋ3 = 3x0.5

2 − 7.2x0.5
3 .

The corresponding metabolic network is illustrated in Figure 3. This is an ex-
ample of a cascade mechanism, which commonly appear in the context of gene
regulation and immunology.

2.5 Set-Valued S-Systems

Extending the right-hand side of (4) to accept parameter boxes as input is a
simple matter, and produces a vector field F : IR

d → IR
d whose components are

interval-valued:

ẋi ∈ Fi(x; [pi]) = [αi]
d∏

j=1

x
[gij]
j − [βi]

d∏

j=1

x
[hij]
j . (7)

It is easy to show ([2], p. 23) that this extension is sharp, i.e.,

R(fi(x; ·); [pi]) = Fi(x; [pi]).

This sharpness property is not necessary for our method to work, but it does
make it more efficient.

We briefly comment that it is possible to allow for uncertain data in the
sense that the exact measurements xj appearing the right-hand side of (7) be
replaced by intervals [xj]. This option will be explored in conjunction with the
interval-based slope construction, mentioned in section 2.1.

198 W. Tucker and V. Moulton

2.6 The Main Algorithm

Given a collection of enhanced sample data {xi,j ; si,j}i,j generated from some
target S-system with parameter p� = (p�

1, . . . , p
�
d), the search is divided into d

independent component-wise searches for p�
1, . . . , p

�
d. These (d + 2)-dimensional

searches can be performed as d parallel processes, seeing that they are completely
independent. In what follows we fill focus on a single such search. For clarity, we
will suppress the component index i.

Each search takes place within a global parameter region P, which is initial-
ized as a box P = ([P1], . . . , [P2(d+1)]). The bounds for this box are determined
by biochemical knowledge (e.g. [17]). Utilizing the constraints (5), we initialize
all 2d possible different parameter configurations P̃1, . . . , P̃2d , each having d + 2
non-zero parameters, and corresponding to different network topologies. Having
done this, we examine each P̃i separately (or all P̃i in parallel). As a first step,
we initialize a list parameterList with the unique element P̃i. This list is then
passed on to the main loop of our search algorithm.

while(isEmpty(parameterList) == false) {
parameter = getCurrent(parameterList);
if (coneCondition(parameter) == true) {
if (diameter(parameter) > Tol)

splitAndStore(parameter, parameterList);
else

store(parameter, resultList);
}

}

Within this loop, each member of parameterList is tested via the cone
condition (1). If the condition is satisfied, there are two possibilities: either the
diameter of the parameter box is smaller than some pre-assigned tolerance Tol, in
which case the box is stored in a second list resultList; otherwise it is bisected
along its widest component, and the two resulting sub-boxes are returned to
parameterList for further investigation. If, however, the cone condition is not
satisfied, the current parameter box is excluded from the remaining search. When
the search terminates, resultList contains all sub-boxes of size ≈ Tol satisfying
the cone condition. If this list is empty, we have established that this particular
network topology does not match our data.

Often, we have have access to sample data from several trajectories, that
is, trajectories emanating from different initial points x(1)(t0), . . . , x(M)(t0). We
can then modify the cone condition (1) to take this additional information into
account:

I([pi]) =
N∧

j=0

M∧

k=1

(
s
(k)
i,j ∈ Fi(x(k)(tj); [pi])

)

This additional data improves our method, seeing that it becomes easier to
discard parameter regions.

Reconstructing Metabolic Networks Using Interval Analysis 199

3 Computational Results

Starting with sample data {tj; xi,j}i,j generated from some target S-system with
parameter p�, we first generate the slope data {si,j}i,j , as described earlier.
These computations are performed by a collection of Matlab scripts, using its
built-in spline functionality. This allows us to differentiate the reconstructed
trajectories, and recover the slopes. It should be pointed out that the data itself is
generated within Matlab, and that the sample times t0, . . . , tN are non-uniformly
distributed. We choose a logarithmic distribution of the sample times, in order
to capture the more vivid motion occurring for small times. In the examples
presented below we use noise-free sample data {xi,j}i,j, as discussed earlier.

The actual parameter reconstruction is carried out by a prototype C++ pro-
gram, utilizing a modified version of the PROFIL/BIAS interval package [14].
The computations were performed on a single 1200MHz Intel Pentium M pro-
cessor using 384MB of RAM.

3.1 A Fixed-Topology Cascade

Our first example is the S-system (6) corresponding to the network presented
in Figure 3. Note that, since we are given the network topology a priori, the
computational complexity of parameter reconstruction is significantly reduced.

For the computations, we used five sets of initial conditions, and each trajec-
tory was sampled at 20 points in time. Following [17], the search region for each
of the kinetic orders gij , and hij was set to contain [−1, +1], whereas the rate
orders αi and βi were sought for within [0, 15]. The stopping tolerance (i.e., the
diameters of the final parameter intervals) was set to 1 × 10−3. In Table 1, we
present the target parameters together with the final result of our reconstruc-
tion. We use the notation “—” to indicate the, a priori, non-present parameters.
The agreement is seen to be almost perfect. The entire search took 1 minute and
6 seconds.

The reconstructed parameters appearing in Table 1 were obtained as follows:
when the global search has terminated, we are left with a collection of parameter

Table 1. The original parameter values (A) and their reconstructions (B) for the
S-system (6)

i αi gi1 gi2 gi3 βi hi1 hi2 hi3

A
1 7.5 — −0.1 −0.05 5.0 0.5 — —
2 2.0 0.5 — — 1.44 — 0.5 —
3 3.0 — 0.5 — 7.2 — — 0.5
B
1 7.49 — −0.100 −0.0503 4.99 0.501 — —
2 2.00 0.501 — — 1.44 — 0.502 —
3 3.00 — 0.500 — 7.20 — — 0.500

200 W. Tucker and V. Moulton

boxes [p1], . . . , [pK], all satisfying the cone condition. We reduce these boxes to
one single box [P�] by forming their hull – the smallest box containing all pa-
rameter boxes [p1], . . . , [pK]. We then have an enclosure of the target parameter
p� ∈ [P�]. Of course, taking the hull of all parameter boxes is a rather crude
measure. We get a better feeling for where the center of mass of the boxes is
located by computing the average of the collection of parameter boxes. In order
to get a single point in parameter space as our “best guess”, we simply take the
midpoint of the average:

P̄
� = Mid

(
1
K

K∑

i=1

[pi]
)

.

It is the components of the resulting P̄
� that are presented in Table 1. Note, how-

ever, that any choice of parameters from one of the resulting boxes [p1], . . . , [pK]
is consistent with our sample data.

Also note that our computations prove that parameters outside the produced
ranges do not match the sample data. Considering e.g. the h33-parameter of (6),
we found that h33 ∈ [0.496, 0.503]. The remaining parameters were enclosed as
follows:

(α1, α2, α3) ∈ ([7.34, 7.62], [1.96, 2.03], [2.98, 3.03])
(g12, g13) ∈ ([−0.103, −0.0982], [−0.0527, −0.0486])
(g21, g32) ∈ ([0.492, 0.509], [0.493, 0.506])

(β1, β2, β3) ∈ ([4.84, 5.13], [1.40, 1.46], [7.18, 7.23])
(h11, h22) ∈ ([0.485, 0.519], [0.489, 0.517]).

Interestingly, some of the parameters reconstructed in [17] did not fall in
the parameter intervals that we computed. For example, even when starting the
search with initial guesses close to the true values, the “quasi-Newton” algorithm
used in [17] produced e.g. α1 = 9.237, β3 = 3.236, h22 = 0.0397, all of which
our algorithm has proved to be unsuitable. This example was also studied in
[16] using four different methods. The outcomes for e.g. α3 were 1.25, 7.70, 7.3,
and 1.45, respectively. Note that none of these values belong to the parameter
enclosure α3 ∈ [2.98, 3.03] produced by our method.

3.2 A 4-Dimensional S-System

Our second example appears in [18]:

ẋ1 = 12x−0.8
3 − 10x0.5

1

ẋ2 = 8x0.5
1 − 3x0.75

2 (8)
ẋ3 = 3x0.75

2 − 5x0.5
3 x0.2

4

ẋ4 = 2x0.5
1 − 6x0.8

4 .

In this example we are not given the network topology, which makes the parame-
ter reconstruction significantly more demanding. For the computations, we used

Reconstructing Metabolic Networks Using Interval Analysis 201

five sets of initial conditions, and each trajectory was sampled at 20 points in
time. Following [18], the search region for each of the kinetic orders gij , and hij

was set to contain [−1, +1], whereas the rate orders αi and βi were sought for
within [0, 20]. The stopping tolerance was set to 2 × 10−3. Note that, although
each component of the vector field has 10 parameters to be determined, we use
the constraints (5) to bring the number of non-zero parameter values down to
six, which can be arranged in 16 different network topologies.

Table 2. The parameter values (and their reconstructions) of the S-system (8)

i αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4

Original
1 12 0.0 0.0 −0.8 0.0 10 0.5 0.0 0.0 0.0
2 8 0.5 0.0 0.0 0.0 3 0.0 0.75 0.0 0.0
3 3 0.0 0.75 0.0 0.0 5 0.0 0.0 0.5 0.2
4 2 0.5 0.0 0.0 0.0 6 0.0 0.0 0.0 0.8

Reconstructed
1 12.00 0.0 0.0 −0.802 0.0 9.98 0.501 0.0 0.0 0.0
2 7.96 0.502 0.0 0.0 0.0 2.96 0.0 0.757 0.0 0.0
3 2.95 0.0 0.759 0.0 0.0 4.95 0.0 0.0 0.504 0.202
4 2.00 0.501 0.0 0.0 0.0 6.00 0.0 0.0 0.0 0.800

In Table 2, we present the target parameters together with the final result of
our reconstruction. Once again, the agreement is seen to be almost perfect. The
entire search took 3 hours, 29 minutes, and 27 seconds. This great increase in
time, compared to the three-dimensional example, appears to indicate that the
method scales very badly. Note, however, that this increase is mostly due to the
fact that we were not given the topology of the four-dimensional system.

The reconstructed parameters appearing in Table 2 were obtained as in the
previous example, but with one additional twist: after having computed the
midpoint of the average, we set any parameter with value less than 5 × 10−4 to
zero:

P̄
� = cutOff

(
Mid

(
1
K

K∑

i=1

[pi]
)

; 5 × 10−4
)

.

This skeletalizing procedure promotes sparse network topologies; in [18], the
cut-off level is set to 1 × 10−1.

4 Discussion

We have presented a novel method for reconstructing parameters using inter-
val analysis. In particular, we have applied it to reconstruct metabolic networks
using S-systems, and obtained very encouraging results. We stress that the pro-
posed method is very general, and can be applied to any system of finitely
parameterized differential equations.

202 W. Tucker and V. Moulton

Our method differs in a fundamental way from the main-stream reconstruc-
tion methods in that we solve the problem by a pruning scheme based on a
boolean function (the cone condition), rather than recasting the parameter re-
construction as a global minimization problem. This has several advantages:
First, it is well-known that global minimization is an intractable problem, in the
sense that numerical solutions often converge to a local, rather than a global,
minimum, and there is no way of telling the two cases apart. Second, the quantity
to be minimized is often chosen to be a (weighted) least-square error. This im-
plicitly pre-assumes rather strong statistical properties of the underlying data,
assumptions that can not easily be verified. Our method simply retains the
parameters that are consistent with the underlying data, avoiding both above-
mentioned problems.

The transition to set-valued vector fields also allows us to dismiss, with a
mathematical certainty, unrealistic network topologies. In particular, this allows
us to detect when the model we are trying to fit to the provided data is not
appropriate. At a sufficiently low tolerance, our method would then discard all
parameter values.

In future work, we will refine the process of parameter exclusion, and exploit
the problem’s great potential for parallelization. This is an essential step towards
exploring the scalability of our proposed method. We will also allow for noisy
sample data, using interval-valued cubic splines in the generation of the slopes.
We also plan to put our method to test on a larger class of problems (including
generalized mass action models).

Acknowledgement

The authors would like to thank Korbinian Strimmer for introducing them to
S-systems, and for helpful discussions.

References

1. Akutsu, T., Miyano, S. & Kuhara, S. Inferring qualitative relations in genetic
networks and metabolic pathways, Pacific Symposium on Biocomputing 5 (2000)
120–301.

2. Alefeld, G. & Herzberger, J. Introduction to Interval Computations. Academic
Press, New York (1983).

3. Alves, R. & Savageau, M. A. Comparing systemic properties of ensembles of bio-
logical networks by graphical and statistical methods, Bioinformatics 16:6 (2000)
527–533.

4. CXSC – C++ eXtension for Scientific Computation, version 2.0. Available from
www.math.uni-wuppertal.de/org/WRST/xsc/cxsc.html

5. de Jong, H. Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review, J. Comp. Biol. 9:1 (2002) 67–103.

6. Enright, W. H. A New Error-Control for Initial Value Solvers, Applied Mathematics
and Computation 31 (1998) 288–301.

Reconstructing Metabolic Networks Using Interval Analysis 203

7. Hlavacek, W. S. & Savageau, M. A. Rules for Coupled Expressions of Regulator
and Effector Genes in Inducible Circuits, J. Mol. Biol. 255 (1996) 121–139.

8. INTLAB – INTerval LABoratory, version 4.1.2. Available from
www.ti3.tu-harburg.de/~rump/intlab/

9. Kell, D. Current Opinion in Microbiology 7 (2004) 296–307.
10. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K. & Tomita, M. Dynamic model-

ing of genetic networks using genetic algorithm and S-system, Bioinformatics 19:5
(2003) 643–650.

11. Kulisch, U. W. & Miranker, W. L. Computer Arithmetic in Theory and Practice.
Academic Press, New York (1981).

12. Moore, R. E. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey (1966).
13. Moore, R. E. Methods and Applications of Interval Analysis. SIAM Studies in

Applied Mathematics, Philadelphia (1979).
14. PROFIL/BIAS – Programmer’s Runtime Optimized Fast Interval Library/Basic

Interval Arithmetic Subroutines. Available from
www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

15. Torres, N. V & Voit, E. O. Pathway Analysis and Optimization in Metabolic En-
geneering. Cambridge University Press, Cambridge (2002).

16. Tsai, K. & Wang, F. Evolutionary optimization with data collocation for reverse
engineering of biological networks Bioinformatics Advance Access published online
on October 28 (2004).

17. Voit, E. O. Computational Analysis of Biochemical Systems. Cambridge University
Press, Cambridge (2000).

18. Voit, E. O. & Almeida, J. Decoupling dynamical systems for pathway identification
from metabolic profiles, Bioinformatics 20:11 (2004) 1670–168

	Introduction
	Methods
	Component-Wise Reconstruction via Slopes
	Interval-Valued Slopes
	Interval Analysis
	S-Systems
	Set-Valued S-Systems
	The Main Algorithm

	Computational Results
	A Fixed-Topology Cascade
	A 4-Dimensional S-System

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

