
AN IMPROVED LOWER BOUND ON THE NUMBER OF LIMIT CYCLES

BIFURCATING FROM A HAMILTONIAN PLANAR VECTOR FIELD OF DEGREE 7

TOMAS JOHNSON, WARWICK TUCKER

Abstract. The limit cycle bifurcations of a Z2 equivariant planar Hamiltonian vector field of degree 7
under Z2 equivariant degree 7 perturbation is studied. We prove that the given system can have at least 53
limit cycles. This is an improved lower bound for the weak formulation of Hilbert’s 16th problem for degree
7, i.e., on the possible number of limit cycles that can bifurcate from a degree 7 planar Hamiltonian system
under degree 7 perturbation,

1. Introduction

Determining the number and location of (isolated) limit cycles for planar polynomial ordinary differential
equations was posed as a grand challenge in Hilbert’s seminal address to the International Congress of
Mathematicians in 1900. Of the 23 problems presented by Hilbert, this (the 16th) turned out to be one of
the most persistent: despite more than a century of intense research, not even the quadratic case has been
resolved. For an overview of the progress that has been made to solve this problem we refer to (Ilyashenko
2002). Partial results for the quadratic case, and a general introduction to the bifurcation theory of planar
polynomial vector fields can be found in (Roussarie 1998). What is known, is that any given polynomial
vector field can have only a finite number of limit cycles; this is proved in (Écalle 1992, Ilyashenko 1991).

A restricted version of Hilbert’s 16th problem introduced by Arnol’d, see e.g. (Arnold 1990), known as
the weak or tangential Hilbert’s 16th problem, asks for the number of limit cycles that can bifurcate from a
perturbation of a Hamiltonian system, see e.g. (Christopher & Li 2007). The weak Hilbert’s 16th problem
has been solved for the quadratic case, see (Chen et al. 2006).

In order to find Hamiltonian systems such that their perturbations have a maximum number of zeros, it is
common to study symmetric Hamiltonians with a maximal number of centres, see e.g. (Li et al. 2002a, Li et
al. 2002b, Zhou et al. 2007a, Zhou et al. 2007b). The specific perturbations are often constructed using the
so-called detection function method, see (Li & Huang 1987). In (Li & Zhang 2004) a degree 7 perturbation of
a Z8 equivariant system, with 49 limit cycles is constructed. As far as we know, this is the largest previously
known lower bound on the number of limit cycles that can bifurcate through quintic perturbation of a quintic
Hamiltonian vector field.

The aim of the present paper is to study a Z2 equivariant system with maximal number of centres, and
prove that at least 53 limit cycles can bifurcate from it. We locate a suitable perturbation by conducting
a similar study as in (Johnson & Tucker 2009a, Johnson & Tucker 2009b); this is described in detail in
Section 3.2. We stress that our approach is completely rigorous, seeing that all numerics is done in interval
arithmetic with directed rounding.

1.1. Abelian integrals. A classical method to prove the existence of limit cycles bifurcating from a con-
tinuous family of level curves of a Hamiltonian, γh ⊂ H−1(h), depending continuously on h, is to study
Abelian integrals, or, more generally, the Melnikov function, see e.g. (Christopher & Li 2007, Guckenheimer
& Holmes 1983). The closed level-curves of a polynomial Hamiltonian are called ovals. We denote the
interior of an oval Dh, i.e. ∂Dh = γh. Given a Hamiltonian system and a perturbation,

(1)

{

ẋ = −Hy(x, y) + ǫf(x, y)
ẏ = Hx(x, y) + ǫg(x, y),
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the Abelian integral, in general multi-valued, is defined as

(2) I(h) =

∫

γh

f(x, y) dy − g(x, y) dx.

We denote the integrand ω, and call it the 1-form associated with the perturbation. In this paper all
perturbations are polynomial.

The most important property of Abelian integrals is described by the Poincaré-Pontryagin theorem.

Theorem 1.1 (Poincaré-Pontryagin). Let P be the return map defined on some section transversal to the
ovals of H, parametrised by the values h of H, where h is taken from some bounded interval (a, b). Let
d(h) = P (h)−h be the displacement function. Then, d(h) = ǫ(I(h)+ ǫφ(h, ǫ)), as ǫ → 0, where φ(h, ǫ)
is analytic and uniformly bounded on a compact neighbourhood of ǫ = 0, h ∈ (a, b).

Proof. see e.g. (Christopher & Li 2007). �

As a consequence of the above theorem, one can prove that a simple zero of I(h) corresponds to a unique
limit cycle bifurcating from the Hamiltonian system as ǫ → 0. In fact, to prove the existence of a limit cycle,
it suffices to have a zero of odd order.

1.2. The Hamiltonian. We study Hamiltonian vector fields with a maximum number of centres. To
generate symmetric such systems for vector fields of odd degree, 2k + 1, one can study:

(3)

{

ẋ = −y(y2 − 1)(y2 − 2) · · · (y2 − k)
ẏ = x(x2 − 1)(x2 − 2) · · · (x2 − k)

We study Z2 symmetric perturbations, and several of the monomial terms of the Abelian integral for
such perturbations of (3) are equal. To construct perturbations with a maximum number of limit cycles it
is desirable to break this symmetry. We therefore study the following system:

(4)

{

ẋ = −y(y2 − 1)(y2 − 2)(y2 − 3)
ẏ = x(x2 − 1.1)(x2 − 2.3)(x2 − 3.6)

,

whose Hamiltonian function is given by:

(5) H(x, y) =
x8

8
−

7x6

6
+

1477x4

400
−

2277x2

500
+

y8

8
− y6 +

11y4

4
− 3y2.

The system has 49 equilibrium points and 42 periodic annuli, appearing in 14 classes, see Figure 1. We
label the classes of periodic annuli Γ1 – Γ14, where the annuli Γ1 – Γ8, are those with multiplicity 4, labelled
in decreasing order under inclusion, see Figure 2 and Table 1. The annuli Γ9 – Γ14 are labelled in increasing
order under inclusion, see Figure 2 and Table 1.

Periodic annulus hmin hmax Expand/Contract
1 -2.7626 -1.9764 expand

2 -2.9112 -2.7626 expand

3 -2.9764 -2.7626 expand

4 -3.0362 -2.9112 expand

5 -3.1014 -2.9764 expand

6 -3.0362 -2.9112 expand

7 -3.1014 -2.9764 expand

8 -2.7626 -2.6377 contract

9 -1.125 0 contract

10 -1.9112 1.6377 contract

11 -1.125 -1 contract

12 -1.9676 -1.9113 expand

13 -1.9112 -1.125 expand

14 -1.125 ∞ expand

Table 1. The domains of the periodic annuli. The labels contract and expand refer to
the behaviour of the ovals in an annulus as h increases.
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Figure 1. Phase portrait of the unperturbed Hamiltonian system.
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Figure 2. The periodic annuli, (a) Γ1 − Γ8, and (b) Γ9 − Γ14.

We are interested in limit cycles bifurcating from the periodic solutions of (4), corresponding to integral
curves of (5).

We study the following Z2 equivariant perturbation of the Hamiltonian system (4),
(6)

p(x, y) := α00

2
+ α20

4
x2 + α02

4
y2 + α40

6
x4 + α22

6
x2y2 + α04

6
y4 + α60

8
x6 + α42

8
x4y2 + α24

8
x2y4 + α06

8
y6

f(x, y) := xp(x, y)
g(x, y) := yp(x, y)
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Thus, the Abelian integral (2) reads,

I(h) =
∫

γh

f dy − g dx =
∫

γh

xp dy − yp dx =
∫

Dh

(

2p + x ∂p
∂x

+ y ∂p
∂y

)

dx ∧ dy

=
∫

Dh

(

α00 + α20x
2 + α02y

2 + α40x
4 + α22x

2y2 + α04y
4

+α60x
6 + α42x

4y2 + α24x
2y4 + α06y

6
)

dx ∧ dy.

2. Results

Theorem 2.1. Consider the Hamiltonian vector field (4), perturbed as in (6). Then one can choose αij ,
such that, as ǫ → 0, at least 53 limit cycles appear in the configuration,

(Γ3
2)

4(Γ2
3)

4(Γ4)
4(Γ2

5)
4(Γ3

6)
4(Γ7)

4(Γ8)
4(Γ14),

see Figure 3.
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Figure 3. The ovals, from which the limit cycles bifurcate.

We use Z(n+1, m) to denote the maximum number of limit cycles that can bifurcate from a Hamiltonian
vector field of degree n, under a perturbation of order m. Obviously, Z(n) := Z(n+1, n) ≤ H(n), where H(n)
denotes the maximum number of limit cycles that a nth degree planar polynomial system can have. Some
known results are Z(2) = 2 (Chen et al. 2006), Z(3) ≥ 13 (Li et al. 2009), Z(4) ≥ 15 (Zhang et al. 2004),
Z(5) ≥ 27 (Johnson & Tucker 2009b), Z(6) ≥ 35 (Wang & Yu 2005), Z(7) ≥ 49 (Li & Zhang 2004),
Z(9) ≥ 80 (Wang et al. 2006), and Z(11) ≥ 121 (Wang & Yu 2006).

Corollary 2.1. Z(7) ≥ 53.

3. Method

3.1. Computer-aided proofs. Seeing that our proof relies upon a great deal of numerical computations,
we have been very careful in validating the computational results. A numerical algorithm is said to be auto-
validating if it produces a mathematically correct result, incorporating not only the discretisation errors
of the numerical method, but also the computer’s internal representation of the floating point numbers
and its rounding procedures. The basic object in any such algorithm is an interval, whose endpoints are
computer-representable floating points. All mathematical operations are performed in interval arithmetic
with directed rounding to ensure the correctness of the result. For a thorough introduction to this topic we
refer to (Moore 1966, Neumaier 1990).
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3.2. Computer-aided computation of Abelian integrals. We use the method developed in (Johnson
& Tucker 2008) to enclose the values of all Abelian integrals I(h) appearing in our proof. This enables
us to rigorously sample their values, i.e., for some discrete values of h, we can determine intervals such
that I(h) ∈ [I−(h), I+(h)]. If we can find two ovals γh1

, and γh2
, such that all elements of [I−(h1), I

+(h1)]
have the opposite sign as those of [I−(h2), I

+(h2)] then, by the intermediate value theorem, there exists
h∗ ∈ (h1, h2), such that I(h∗) = 0, and a neighbourhood of γh∗ that is either attracting or repelling for the
perturbed vector field. Since Pǫ, the return map of the perturbed vector field, is analytic and non-constant,
it has isolated fixed points. Thus, a zero of I implies the existence of (at least) one limit cycle bifurcating
from γh∗ .

We recall that, in general, the Abelian integral is multi-valued, and the abovementioned computations
are done for each continuous family of ovals separately. In the equivariant case at hand, I(h) is identically
the same on each of the different annuli within one annulus-class. Thus, one can trivially split the set of
ovals corresponding to H = h into natural subsets. This is crucial for the success of our approach, since for
each limit cycle we find bifurcating from the annuli Γ1 −Γ8 there will be three additional cycles that can be
found by reflecting in the x and y axes.

In order to construct a perturbation such that the associated Abelian integral has a given number of zeros,
the perturbation has to be chosen in a careful manner. We use the same heuristic procedure as in (Johnson
& Tucker 2009a, Johnson & Tucker 2009b) to generate the coefficients of a suitable candidate form ω. The
first part of our approach is to integrate monomial forms at some points, h1, . . . , hN , and then to specify the
coefficients of

(7) dω =
(

α00 + α20x
2 + α02y

2 + α40x
4 + α22x

2y2 + α04y
4 + α60x

6 + α42x
4y2 + α24x

2y4 + α06y
6
)

dx∧dy,

such that the Abelian integrals vanish:

(8) I(hℓ) =

∫

γh
ℓ

ω = 0, ℓ = 1, . . . , N.

Therefore, let

(9) Iij(h) =

∫

Dh

xiyj dx ∧ dy,

where ∂Dh = γh. Then we have the following linear decomposition

I(h) = α00I00(h) + α20I20(h) + α02I02(h) + α40I40(h) + α22I22(h)(10)

+ α04I04(h) + α60I60(h) + α42I42(h) + α24I24(h) + α06I06(h).

Note, this method can automatically give any configuration of limit cycles generated by 9 zeros, i.e., up to
36 limit cycles. To find a better set of candidate coefficients we note that the system has the property that
the Abelian integral (10) is multi-valued for some pieces of the domain, see Table 1. This property indicates
that it should be possible, as in (Johnson & Tucker 2009a), to force those I’s that have joint domains to
oscillate together.

Given some candidate coefficients of the form ω, we calculate the Iij(h) at intermediate ovals, h̃1 < h1 <

h̃2 < · · · < hN < h̃N+1. If the linear combination (10) of the Iij(h̃) has validated sign changes between the
sample points we are done: it has been proved that the corresponding perturbation yields bifurcations with
at least the given number of limit cycles as ǫ → 0.

3.3. Computational results. Using the method described above to generate candidate coefficients for ω,
we get the result listed in Table 2.

The next step is to validate that the generated coefficients yield the expected behaviour. Therefore, we
enclose the value of the corresponding Abelian integrals at intermediate ovals. As is shown in Table 3, the
generated coefficients correspond to a perturbation for which the claimed number of limit cycles bifurcate
from the given Hamiltonian as ǫ → 0. The graphs of the Abelian integrals for Γ2, Γ3, Γ4, Γ5, Γ6, Γ7, Γ8, and
Γ14, from which it bifurcates limit cycles, are shown in Figure 4.

All computations were performed on a Quad-Core AMD Opteron Processor 8354 2.2GHz, 64bit processor
with 32Gb of RAM. The program was compiled with gcc, version 4.1.2. The software for interval arithmetic
was provided by the CXS-C package, version 2.2.3, see (CXSC 2008, Hammer et al. 1995). The total run-time
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Figure 4. The graphs of the Abelian integrals on Γ2 − Γ8 and Γ14.



LIMIT CYCLES BIFURCATING FROM A HAMILTONIAN PLANAR VECTOR FIELD OF DEGREE 7 7

α00 0.30961876
α20 1.0000000
α02 -1.7072698
α40 -0.59879205
α22 0.25041556
α04 0.81262742
α60 0.10095772
α42 -0.057802570
α24 0.0051675287
α06 -0.13625345

Table 2. The generated coefficients of the perturbation (6).

Periodic annulus h I(h)
2 -2.9110 [5.7976,7.4677]×10−6

2 -2.8690 [-8.5663,-6.6829]×10−6

2 -2.7956 [0.8383,1.0598]×10−5

2 -2.7630 [-6.1764,-5.9324]×10−5

3 -2.9764 [1.2772,1.5956]×10−5

3 -2.9680 [-1.0051,-6.7627]×10−5

3 -2.8000 [2.4572,2.4619]×10−3

4 -3.0130 [-3.2949,-3.1166]×10−6

4 -2.9290 [1.3055,1.3467]×10−5

5 -3.0840 [-2.2207,-1.6995]×10−6

5 -3.0040 [1.5658,1.6910]×10−5

5 -2.7964 [-2.4966,-2.4959]×10−3

6 -3.0110 [1.2661,1.3593]×10−6

6 -2.9490 [-7.0838,-5.3883]×10−7

6 -2.9163 [4.7068,6.6876]×10−7

6 -2.9113 [-2.8479,-0.8376]×10−7

7 -3.0630 [-2.1895,-2.0970]×10−5

7 -2.9820 [3.9247,4.0927]×10−5

8 -2.6990 [1.6729,1.6816]×10−4

8 -2.7620 [-1.4908,-1.4782]×10−4

14 -1.1240 [0.1638,0.1726]
14 -0.5000 [-0.1311,-0.1225]

Table 3. The computed enclosures of the Abelian integrals.

of the validated program (Johnson & Tucker 2008), to calculate the 22 Abelian integrals necessary for the
proof, was 33.57 hours.

4. Some concluding remarks

We have continued the study of lower bounds for the weak Hilbert 16th problem for odd degrees from
(Johnson & Tucker 2009a), where we obtained a new lower bound for the degree five case, and studied the
degree seven case. This is probably, however, the limit of our heuristic approach based on Z2 symmetric
perturbations. The reason is that even though our procedure is mostly automated it still requires human
input, and the next case, degree 9, would have 15 parameters to be controlled by hand. A future project
is therefore to develop an automated method to pick parameters for Z2 symmetric perturbations of the
symmetric centres of a Hamiltonian vector field of odd degree and with maximal number of centres.

For vector fields of even order no such simple symmetries as the restriction to the study of even Hamilto-
nians and perturbations exist. Our method is therefore not directly applicable in this situation. We believe,
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however, that it should be possible to improve the bound for the degree four case using our integrator
(Johnson & Tucker 2008).
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