|
|
P. Kristel; E. Schippers; W. Staubach. A Fermionic Grunsky operator. Submitted.
E. Schippers; W. Staubach. A scattering theory of harmonic one-forms on Riemann surfaces I: Schiffer operators, cohomology, and index theorems. Submitted.
E. Schippers; W. Staubach. Overfare of harmonic one-forms on Riemann surfaces. Submitted.
E. Schippers; W. Staubach. Overfare of harmonic functions on Riemann surfaces. Submitted.
T. Mattsson; A. Israelsson; W. Staubach. Regularity of oscillatory integral operators. Submitted.
W. Staubach. Regularity of oscillatory integral operators arising in evolutionary PDEs, in classical function spaces. Accepted for publication in Pseudo-Differential Operators and Related Topics, Research Perspectives Ghent Analysis and PDE Center, Springer 2024.
E. Schippers; W. Staubach. A scattering theory of harmonic one-forms on Riemann surfaces II: the scattering matrix and generalized period mappings. Accepted for publication in New York Journal of Mathematics..
A. Bergfeldt; W. Staubach. On the regularity of systems of dispersive partial differential equations. Accepted for publication in Arkiv för Matematik.
E. Schippers; W. Staubach. Weil-Petersson Teichmüller theory of surfaces of infinite conformal type. In: K. Ohshika, A. Papadopoulos (eds) In the Tradition of Thurston III. Springer, Cham. https://doi.org/10.1007/978-3-031-43502-7_6 (2024).
A. J. Castro; A. Israelsson; W. Staubach; M. Yerlanov. Estimates for evolutionary partial differential equations in classical function spaces. Forum Math. Sigma 11 (2023).
A. Bergfeldt; S. Rodríguez-López; D. Rule. D; W. Staubach. Multilinear oscillatory integrals and estimates for coupled systems of dispersive PDEs (2023). Trans. Amer. Math. Soc. 376 (2023), no. 11, 7555-7601.
T. Mattsson; A. Israelsson; W. Staubach. Boundedness of Fourier integral operators on classical function spaces (2023). J. Funct. Anal. 285 (2023), no. 5, Paper No. 110018, 64 pp.
E. Schippers; W. Staubach. A survey of scattering theory on Riemann surfaces with applications in global analysis and geometry (2023). Special issue of Vietnamn Journal of Mathematics dedicated to Carlos E. Kenig's 70th birthday, Vietnam J. Math. 51 (2023), no. 4, 911-934.
A. Bergfeldt; W. Staubach. On the regularity of multilinear Schrödinger integral operators. Analysis and Applications. 21 (2023), no. 2, 385-427.
A. Bergfeldt; S. Rodríguez-López; W. Staubach. On weighted norm inequalities for oscillatory integral operators. Analysis and Mathematical Physics. 12 (2022), no. 6, Paper No. 136.
E. Schippers; W. Staubach. Analysis on quasidisks; A unified approach through transmission and jump problems. EMS Surveys in Mathematical Sciences. 9 (2022), no. 1, 31-97.
T. Mattsson; W. Staubach. On the Sobolev boundedness of oscillatory integral operators with forbidden amplitudes (2021) Preprint.
A. J. Castro; A. Israelsson; W. Staubach. Regularity of Fourier integral operators with amplitudes in general Hörmander classes. Analysis and Mathematical Physics. 11 (2021), no. 3, Paper No. 121.
S. Rodríguez-López; D. Rule. D; W. Staubach. Global boundedness of a class of multilinear Fourier integral operators. Forum of Mathematics Sigma. 9 (2021), Paper No. e14.
D. Radnell; E. Schippers; M. Shirazi; W. Staubach. Schiffer operators and calculation of a determinant line in conformal field theory. New York Journal of Mathematics. 27 (2021), 253-271.
E. Schippers; M. Shirazi; W. Staubach. Schiffer comparison operators and approximations on Riemann surfaces bordered by quasicircles. Journal of Geometric Analysis 31 (2021), no. 6, 5877-5908.
A. Israelsson; S. Rodríguez-López; W. Staubach. Local and global estimates for hyperbolic equations in Besov-Lipschitz and Triebel-Lizorkin spaces. Analysis & PDE 14 (2021), no. 1, 1-44.
E. Schippers; W. Staubach. Transmission of harmonic functions through quasicircles on compact Riemann surfacees. Annales Academiae Scientiarum Fennicae Mathematica. 45 (2020), no. 2, 1111-1134.
E. Schippers; W. Staubach. Plemelj-Sokhotski isomorphism for quasicircles in Riemann surfaces and the Schiffer operator. Mathematische Annalen. 378 (2020), no. 3-4, 1613-1653.
D. Radnell; E. Schippers; W. Staubach. Dirichlet space of domains bounded by quasicircles. Communications in Contemporary Mathematics. 22 (2020), no. 3, 1950022.
D. Radnell; E. Schippers; W. Staubach. Model of the Teichmüller space of genus zero by period maps. Conformal Geometry and Dynamics, AMS. 23 (2019), 32-51.
A. J. Castro; S. Rodríguez-López; W. Staubach. Transference of local to global L2 maximal estimates for dispersive partial differential equations. Journal of Mathematical Analysis and Applications. 471 (2019), no. 1-2, 411-422.
E. Schippers; W. Staubach. Comparison moduli spaces for Riemann surfaces. Complex analysis and dynamical systems, 231-271, Trends Math., Birkhäuser/Springer, Cham, (2018).
A. J. Castro; S. Rodríguez-López; W. Staubach. L2-Solvability of the Dirichlet, Neumann and the regularity problems for parabolic equations with time-independent Hölder-continuous coefficients. Transactions of the American Mathematical Society. 370 (2018), no. 1, 265-319.
E. Schippers; W. Staubach. Riemann boundary value problem on quasidisks, Faber isomorphism and Grunsky operator. Complex Analysis and Operator Theory. 12 (2018), no. 2, 325-354.
D. Radnell; E. Schippers; W. Staubach. Quasiconformal maps of bordered Riemann surfaces with L2 Beltrami differentials. Journal d'Analyse Mathematique. 132 (2017), 229-245.
E. Schippers; W. Staubach. Harmonic reflection in quasicircles and well-posedness of a Riemann-Hilbert problem on quasidisks. Journal of Mathematical Analysis and Applications. 448 (2017), no. 2, 864-884.
D. Radnell; E. Schippers; W. Staubach. Quasiconformal Teichmüller theory as an analytical foundation for two dimensional conformal field theory. Lie algebras, vertex operator algebras, and related topics, 205-238 Contemporary Mathematics, American Mathematical Society (2017).
D. Radnell; E. Schippers; W. Staubach. Convergence of the Weil-Petersson metric on the Teichmüller space of bordered surfaces. Communications in Contemporary Mathematics. 19 (2017), no. 1, 1650025.
E. Schippers; W. Staubach. Well-posedness of a Riemann-Hilbert problem on d-regular quasidisks. Annales Academiae Scientiarum Fennicae Mathematica. 42 (2017), no. 1, 141-147.
D. Radnell; E. Schippers; W. Staubach. Dirichlet's problem and Sokhotski-Plemelj's jump formula on Weil-Petersson-Class quasidisks. Annales Academiae Scientiarum Fennicae Mathematica. 41 (2016), no. 1, 119-127.
D. Radnell; E. Schippers; W. Staubach. Weil-Petersson class non-overlapping mappings into a Riemann surface. Communications in Contemporary Mathematics. 18 (2016), no. 4, 1550060.
D. Radnell; E. Schippers; W. Staubach. A Hilbert manifold structure on the Weil-Petersson class Teichmüller space of bordered Riemann surfaces. Communications in Contemporary Mathematics. 17 (2015), no. 4, 1550016.
S. Rodríguez-López; D. Rule. D; W. Staubach. On the boundedness of certain bilinear oscillatory integral operators. Transactions of the American Mathematical Society 367 (2015), no.10, 6971-6995.
E. Schippers; W. Staubach. A symplectic functional analytic proof of the conformal welding theorem. Proceedings of the American Mathematical Society. 143 (2015), 265-278.
S. Rodríguez-López; W. Staubach. Some endpoint estimates for bilinear paraproducts and applications. Journal of Mathematical Analysis and Applications, 421 (2015), 1021-1041.
S. Rodríguez-López; D. Rule. D; W. Staubach. A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators. Advances in Mathematics, Vol 264 (2014), 1-54.
D. Dos Santos Ferreira; W. Staubach. Global and local regularity of Fourier integral operators on weighted and unweighted spaces. Memoirs of the American Mathematical Society, Vol 229, Memo 1074 (2014).
N. Michalowski; D. Rule; W. Staubach. Multilinear pseudodifferential operators beyond Calderón-Zygmund theory. Journal of Mathematical Analysis and Applications, 414 (2014), no.1, 149-165.
S. Rodríguez-López; W. Staubach. Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators. Journal of Functional Analysis 264 (2013), 2356-2385.
N. Michalowski; D. Rule; W. Staubach. Weighted Lp boundedness of pseudodifferential operators and applications. Canadian Mathematical Bulletin 55 (2012), no.3, 555-570.
N. Michalowski; D. Rule; W. Staubach. Weighted norm inequalities for pseudo-pseudodifferential operators defined by amplitudes. Journal of Functional Analysis 258 (2010), 4183-420.
W. Schlag; A. Soffer; W. Staubach. Decay for the wave and Schrödinger evolutions on manifolds with conical ends 2. Transactions of the American Mathematical Society 362 (2010), no. 1, 289-318.
W. Schlag; A. Soffer; W. Staubach. Decay for the wave and Schrödinger evolutions on manifolds with conical ends 1. Transactions of the American Mathematical Society 362 (2010), no. 1, 19-52.
E. Schippers; W. Staubach. Variation of Neumann and Green functions under homotopies of the boundary. Israel Journal of Mathematics 173 (2009), 279-303.
O. Costin; W. Schlag; W. Staubach; S. Tanveer. Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials. Journal of Functional Analysis 255 (2008), no. 9, 2321-2362.
H. Dong; W. Staubach. Unique continuation for the Schrödinger equation with gradient vector potentials. Proceedings of the American Mathematical Society 135 (2007), no. 7, 2141-2149.
C. E. Kenig; W. Staubach. Psi-pseudodifferential operators and estimates for maximal oscillatory integrals. Studia Mathematica 183 (2007), no. 3, 249-258.
P. Greiner; W. Staubach; W. Wang. A relative index on the space of 3-dimensional embeddable CR-structures of finite type. Mathematische Nachrichten 278 (2005), no. 4, 379-400.
J. Colliander; W. Staubach. Refinement of the Strichartz estimates and the L2 mass concentration for 1-d quintic nonlinear Schrödinger equation. 11 pp. Preprint (2004).
W. Staubach. Wiener path integrals and the fundamental solution for the Heisenberg Laplacian. Journal d'Analyse Mathematique 91 (2003), 389-400.
W. Staubach. Path integrals, microlocal analysis and the fundamental solution for Hörmander Laplacians. PhD-Thesis, University of Toronto (2003).
W. Staubach. Pseudolocality and microlocality of general classes of pseudodifferential operators. Mathematische Nachrichten 223 (2001), 121-134.