Tillåtna hjälpmedel: Skrivdon. Skrivtid: .
Maximal poäng på varje problem är 5. För godkänt krävs 18 poäng och
för väl godkänt 28 poäng.
- 1.
- Beräkna
- 2.
- Bestäm alla lösningar till differentialekvationen
- 3.
- Beräkna integralerna
- 4.
- Bestäm största möjliga arean för triangeln
rätvinklig vid
om
ligger på
kurvan
ligger på -axeln och
- 5.
- Beräkna volymen av den rotationskropp som genereras då området
roterar kring -axeln.
- 6.
- Bestäm den lösning till differentialekvationen
för vilken
- 7.
- Visa olikheten
- 8.
- Serien
är konvergent och
för alla
a) Visa att det finns ett tal
sådant att
för alla
b) Visa att serien
är konvergent.
Till
svar
Till
svar och anvisningar
Tillbaka
till övningstentamina
Tillbaka
till Analys MN1