Christer Oscar Kiselman's research interests
My research interests include the themes mentioned in the
following publications. (For a list of my papers, se
my bibliography.)
Digital geometry, mathematical
morphology, and discrete optimization
- 00-3. Digital Jordan curve theorems.
- 03-1. La geometrio de la komputila ekrano.
- 04-1. Convex functions on discrete sets.
- 04-2. Digital Geometry and Mathematical Morphology.
Abstract.
- 05-2. Subharmonic functions on discrete structures.
- 07-2. Division of mappings between complete lattices.
- 08-1. Minima locaux, fonctions marginales et hyperplans
séparants dans l'optimisation discrète.
- 08-2. Datorskärmens geometri [The geometry of the computer
screen].
- 10-1. Characterizing digital straightness by means of difference
operators.
- 10-2. Inverses and quotients of mappings between ordered sets.
- 10-3. Local minima, marginal functions, and separating
hyperplanes in discrete optimization.
- 10-4. Christer O. Kiselman;
Shiva Samieinia, Convexity of marginal functions in the discrete
case.
- 11-1. Characterizing digital straightness and digital convexity
by means of difference operators.
- 13-1. Diskreta kaj reela optimumado.
- 14-1. Kiel rekoni rektojn kaj strekojn inter ĉiuj kurboj
kaj aliaj bildoj sur la komputila ekrano?
- 15-2. Estimates for solutions to discrete convolution equations.
- 18-2. Digita geometrio, matematika morfologio kaj diskreta
optimumado, 69 pp.
- 2019-04-30. Duality: A tool for shape description. Manuscript,
19 pp., accepted for publication.
- 22-1. Elements of Digital Geometry, Mathematical Morphology,
and Discrete Optimization, comprising 488 pages, published on 2022
January 18 by World Scientific, Singapore.
- 22-2. Generalized elementary functions. Published online 2022 February 17.
Convexity theory
- 92-2. Regularity classes for operations in convexity
theory.
- 93-1. Order and type as measures of growth for convex or entire
functions.
- 96-2. Regularity of distance transformations in image
analysis.
- 02-1. A semigroup of operators in convexity theory.
- 10-4. Kiselman, Christer O.; Samieinia, Shiva. Convexity of
marginal functions in the discrete case.
- 17-5. Kiselman, Christer O.; Samieinia, Shiva. Convexity of
marginal functions in the discrete case.
- 17-6. Discrete convolution operators, the Fourier
transformation, and its tropical counterpart: the Fenchel
transformation.
Analysis in several complex variables
and complex geometry
- 96-1. Lineally convex Hartogs domains.
- 97-1. Duality of functions defined in lineally convex sets.
- 98-1. A differential inequality characterizing weak lineal
convexity.
- 00-1. Ensembles de sous-niveau et images inverses des fonctions
plurisousharmoniques.
- 00-2. Plurisubharmonic functions and potential theory in several
complex variables.
- 05-1. Functions on discrete sets holomorphic in the sense of
Isaacs, or monodiffric functions of the first kind.
- 08-3. Functions on discrete sets
holomorphic in the sense of Ferrand, or monodiffric functions of the
second kind.
- 09-1. Vyacheslav Zakharyuta's complex analysis.
- 11-2. Les mathématiques de Nguyen
Thanh Van.
- 11-3. Analytic continuation of fundamental solutions to
differential equations with constant coefficients.
- 16-1. Weak lineal convexity.
- 17-2. Domains of holomorphy for Fourier transforms of solutions
to discrete convolution equations.
- 19-1. Generalized convexity: The case of lineally convex Hartogs
domains
- 2021-11-19. Complex Convexity, a chapter in Handbook of
Complex Analysis, edited by Steven Krantz.
History of mathematics
- 15-1. Euclid's straight lines.
- 19-i. Werner Fenchel, a pioneer in convexity theory and a migrant scientist.
- 19-ii. Hans Rådström and how to define smooth functions on any set.
Distribution Theory and Fourier
Analysis
- 02-2. Generalized Fourier transformations: the work of
Bochner and Carleman viewed in the light of the theories of Schwartz
and Sato.
- 07-1. Enkonduko al distribucioj.
Linguistics
- 95-a. Transitivaj kaj netransitivaj verboj en
Esperanto.
- 95-b. Vad är ett naturligt tal? Ett exempel på matematisk
språkvård [What is a natural number? An example of mathematical
language planning].
- 01-a. La sveda faklingvo en tekniko, matematiko kaj
natursciencoj.
- 01-b. Kreado de matematikaj terminoj.
- 01-c. Svenskt fackspråk inom teknik, matematik och naturvetenskap
[The situation of Swedish in the fields of technology, mathematics,
and the natural sciences].
- 08-a. Esperanto: its origins and early history.
- 08-b. Christer Kiselman; Lars Mouwitz. Matematiktermer för
skolan [Mathematical Terms for School Use].
- 08-c. Språkens rikedomar och terminologins problem [The
treasures of the languages and the problems of terminology].
- 11-a. Variantoj de esperanto iniciatitaj de Zamenhof.
- 16-b. La jidogramatiko de Zamenhof kaj lia Lingvo universala.
- 18-i. Enkonduko. In: Kiselman, Christer Oscar; Corsetti,
Renato; Dasgupto, Probal, Eds. Aliroj al esperanto,
pp. 5–8.
- 19-a. Language choice in scientific writing: The case of
mathematics at Uppsala University and a Nordic journal.
- 19-b. Kion faris Zamenhof antaŭ 1887?
- 22-a. Zamenhof's Yiddish Grammar and His Universal
Language: Two Projects in Ashkenazi Culture, 167 pp. Published in
2022 by KAVA-PECH, Dobřichovice.
I will be happy to send copies of any of these articles if you are
interested.
Latest update 2022-02-21. To Christer's home
page.