NEW: Change in schedule! Lecture moved from 5/12 to Thursday 4/12, 10-12, P1145!
www-page: http://www.math.uu.se/~astrombe/analtalt08/analtalt08.html
Teacher: Andreas Strömbergsson email: firstname.lastname at math dot uu dot se (with "o" in place of "ö").
Literature:
Preliminary plan of lectures:
Date | Time | Place | Section | Topic |
---|---|---|---|---|
1. Wed, 3/9 | 10-12 | 11167 | Ch. 1,4 | Primes in arithmetic progressions |
2. Fri, 5/9 | 13-15 | 11167 | handout | Infinite products |
3. Fri, 12/9 | 13-15 | 11167 | handout | Dirichlet series and partial summation |
4. Wed, 17/9 | 10-12 | 11167 | Ch 2-5 | More on Dirichlet characters and L(1,chi) |
5. Fri, 19/9 | 13-15 | P2214 | Ch 6 | Dirichlet's class number formula |
6. Wed, 24/9 | 13-15 | P2145 | Ch. 7 + handout | The distribution of the primes |
7. Wed, 1/10 | 10-12 | P2215 | handout | The Prime Number Theorem |
8. Fri, 3/10 | 13-15 | 11167 | Ch. 10,11 | The Gamma function; Integral functions of order 1 |
9. Wed, 8/10 | 13-15 | 11167 | Ch 8-9 | The functional equation for zeta(s) and L(s,chi) |
10. Fri, 10/10 | 13-15 | 11167 | Ch 12 | The infinite products for xi(s) and xi(s,chi) |
11. Wed, 15/10 | 10-12 | 11167 | Ch. 13 (and 14) | A zero-free region for zeta(s) (and L(s,chi)) |
12. Wed, 22/10 | 10-12 | P2215 | Ch. 14 | Zero-free regions for L(s,chi) |
13. Wed, 29/10 | 10-12 | 11167 | Ch. 15-16 | The numbers N(T) and N(T,chi) |
14. Wed, 5/11 | 10-12 | 11167 | Ch. 17-18 | The explicit formula for psi(x) |
15. Fri, 7/11 | 13-15 | P2215 | Ch. 19 | The explicit formula for psi(x,chi) |
16. Wed, 12/11 | 10-12 | P2215 | Ch. 20 | The Prime Number Theorem for Arithmetic Progressions (I) |
17. Fri, 14/11 | 13-15 | 11167 | Ch. 21-22 | Siegel's Theorem |
18. Wed, 19/11 | 10-12 | 11167 | Ch. 23 | The Polya-Vinogradov Inequality |
19. Fri, 21/11 | 8-10 | P2215 | Ch. 24-25 | Further Prime Number Sums |
20. Wed, 26/11 | 10-12 | 11167 | Ch. 26 | Sums of Three Primes PRESENTATION |
21. Wed, 3/12 | 10-12 | 11167 | Ch. 27 | The Large Sieve |
22. Thu, 4/12 | 10-12 | P1145 | Ch. 28 | Bombieri's Theorem |